沥青路面现场压实细观特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mesoscopic characteristics of asphalt pavement during field compaction
  • 作者:刘卫东 ; 高英 ; 黄晓明 ; 田波
  • 英文作者:LIU Weidong;GAO Ying;HUANG Xiaoming;TIAN Bo;School of Architecture and Transportation Engineering, Guilin University of Electronic Technology;School of Transportation, Southeast University;Research Institute of Highway Ministry of Transport;
  • 关键词:离散元 ; 路面压实 ; 细观特性 ; 集料运动 ; 沥青混合料
  • 英文关键词:discrete element method;;pavement compaction;;mesoscopic characteristic;;aggregate motion;;asphalt mixture
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:桂林电子科技大学建筑与交通工程学院;东南大学交通学院;交通运输部公路科学研究院;
  • 出版日期:2019-03-11 10:46
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(51878168,51668012);; 广西高校中青年教师基础能力提升项目(2018KY0206)
  • 语种:中文;
  • 页:HEBX201903015
  • 页数:8
  • CN:03
  • ISSN:23-1235/T
  • 分类号:105-112
摘要
为研究沥青路面现场压实细观特性,基于离散元PFC3D(particle flow code in 3-dimensions)根据均布荷载-时间等效原则建立了考虑集料形态特征和温度影响的三维沥青路面压实模型,通过动态模量试验利用时间-温度等效原理确定了热态沥青混合料的细观参数,分析压实过程中路面厚度、集料运动、接触力及能量演化机制等.结果表明:沥青路面位移表现出非连续和不对称性,集料的运动位移、应力与压实荷位及其方向有关;压实区域与非压实区域集料的运动规律不同,在压实区域与非压实区域的过渡带集料运动方向形成了类似"涡流"状结构;压实区域材料内部以接触压力为主;外力做功和应变能在压实初期增加速率较大,后期逐渐变小;动能在初始阶段因压实应力未稳定导致集料运动速度较大发生异常,当进入稳定阶段后,动能减小.该研究结果与前期成果基本一致,表明采用离散元法建立的路面压实模型分析沥青路面压实过程的细观行为是合理可行的,离散元法是研究沥青路面细观特征的重要工具.
        To analyze the micromechanical response of asphalt mixture during field compaction, a 3 D compaction model was developed based on particle flow code in 3-dimensions(PFC3 D) by considering the asphalt pavement properties and compaction temperature. The Burger's model parameters were obtained by dynamic modulus test with time-temperature superposition(TTS) principle, and were used to describe the contact behavior between aggregate and asphalt. Micromechanical characteristics, such as aggregate migration and motion, evolution of contact force and energy were investigated during field compaction. Results showed that asphalt pavement displacement displayed non-continuity and asymmetry. Meanwhile, aggregate motion and stress were concerned with the load position and orientation of compaction load. The laws of aggregate motion in compacted areas were different from the non-compacted areas, and the analogous whirlpool condition was formed in the transitional zone of the compacted and non-compacted areas. Additionally, the compacted areas were mainly dominated by contact pressure. The work of external force and strain energy increased quickly at the initial stage of compaction, and gradually decreased at the later stage. Due to the unstabilized compaction stress that resulted in a faster speed, the kinetic energy developed abnormally. However, once the compaction model entered a stable stage, the kinetic energy decreased. These results agree with those of preliminary research. It is reasonable to conduct a survey of the microscopic behavior of asphalt mixture with discrete element method(DEM). The DEM can be employed to investigate micromechanical characteristics of asphalt mixture during filed compaction.
引文
[1] HUERNE H T.Compaction of asphalt pavements[D]. Enschede: University of Twente, 2004
    [2] 郑健龙, 陈骁, 李庆瑞, 等. 热态沥青混合料路面振动压实过程ANSYS模拟研究[J]. 工程力学, 2008, 25(10): 200 ZHENG Jianlong, CHEN Xiao, LI Qingrui, et al. ANSYS research on vibratory compacting process of hot asphalt mixture pavement[J]. Engineering Mechanics, 2008, 25(10): 200
    [3] 郑健龙, 陈骁, 钱国平. 松散热态沥青混合料压实力学响应及其黏弹塑性模型参数分析[J]. 工程力学, 2010, 27(1): 33 ZHENG Jianlong, CHEN Xiao, QIAN Guoping. Compaction mechanical response and analysis of viscoelastoplasticity model parameter for loose hot asphalt mixture[J]. Engineering Mechanics, 2010, 27(1): 33
    [4] KONERU S, MASAD E, RAJAGOPAL K R A. Thermomechanical framework for modeling the compaction of asphalt mixes[J]. Mechanics of Materials, 2008, 40(10): 846
    [5] MASAD E, SCARPAS A, RAJAGOPA K R A, et al. Finite element modelling of field compaction of hot mix asphalt. Part I: theory[J]. International Journal of Pavement Engineering, 2016, 17(1): 13
    [6] MASAD E, SCARPAS A, RAJAGOPA K R A, et al. Finite element modelling of field compaction of hot mix asphalt. Part II: applications[J]. International Journal of Pavement Engineering, 2016, 17(1): 24
    [7] LIU Yu, YOU Zhanping. Visualization and simulation of asphalt concrete with randomly generated three dimensional models[J]. Journal of Computing in Civil Engineering, 2009, 23(6): 340
    [8] LIU Yu, YOU Zhanping. Discrete element modeling: impacts of aggregate sphericity, orientation, and angularity on creep stiffness of idealized asphalt mixtures[J]. Journal of Engineering Mechanics, 2011, 137(4): 294
    [9] LIU Yu, YOU Zhanping. Fundamental study on pavement wheel interaction forces through discrete element simulation[J]. International Journal of Pavement Research and Technology, 2013, 6(6): 689
    [10]LIU Yu, YOU Zhanping, YAO Hui. An idealized discrete element model for pavement wheel interaction[J]. Journal of Marine Science and Technology, 2015, 23(3): 339
    [11]MICAELO R, RIBEIRO J, AZEVEDO M, et al. Asphalt compaction study[J]. Road Materials and Pavement Design, 2011, 12(3): 461
    [12]许振宇. 具有异型体结构沥青路面压实特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014 XU Zhenyu. Study on compaction characteristics of asphalt pavement with heterotypic structure[D]. Harbin: Harbin Institute of Technology, 2014
    [13]CHEN Jinsong, HUANG Baoshan, CHEN Feng, et al. Application of discrete element method to superpave gyratory compaction[J]. Road Materials and Pavement Design, 2012, 13(3): 480
    [14]LIU Yu, DAI Qinglin, YOU Zhanping. Viscoelastic model for discrete element simulation of asphalt mixtures[J]. Journal of Engineering Mechanics, 2009, 135(4): 324
    [15]刘卫东. 基于离散元的沥青混合料空间结构形成过程研究[D]. 南京: 东南大学, 2016 LIU Weidong. Research on formation of spatial structure for asphalt mixture using discrete element method[D]. Nanjing: Southeast University, 2016
    [16]LIU Yu, YOU Zhanping. Accelerated discrete element modeling of asphalt based materials with the frequency temperature superposition principle[J]. Journal of Engineering Mechanics, 2010, 137 (5): 355
    [17]LIU Weidong, LI Limin, TIAN Bo, et al. Evaluation indices of an asphalt mixture digital specimen based on the discrete element method[J]. Journal of Testing and Evaluation, 2016, 44(2): 812
    [18]LIU Weidong, GAO Ying. Discrete element modeling of migration and evolution rules of coarse aggregates in the static compaction[J]. Journal of Southeast University (English Edition), 2016, 32(1): 85
    [19]Itasca Consulting Group Inc.. PFC 3D version 4.0 [R]. Minneapolis: Itasca Consulting Group Inc., 2008
    [20]支喜兰, 江晓霞, 沙爱民. 路面基层振动压实作用下的底基层应力[J]. 长安大学学报(自然科学版), 2003, 23(3): 33 ZHI Xilan, JIANG Xiaoxia, SHA Aimin. Pavement sub-base course stress by vibrating compaction on course[J]. Journal of Chang’an University(Natural Science Edition), 2003, 23(3): 33
    [21]公路沥青路面施工技术规范: JTG F40—2004[S]. 北京: 人民交通出版社, 2004 Technical specification for construction of highway asphalt pavements: JTG F40—2004[S]. Beijing: China Communications Press, 2004
    [22]ROOZBAHANY E G, PARTL M N, GUARIN A. Particle flow during compaction of asphalt model materials[J]. Construction and Building Materials, 2015, 100(12): 273
    [23]黄宝涛. 振动压实对道路材料空间组构及其力学性能演化的离散元模拟[D]. 南京: 东南大学, 2009 HUANG Baotao. The DEM numerical simulation about road materials’ fabric and mechanical properties evolution under vibration compaction[D]. Nanjing: Southeast University, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700