腐殖酸对低浓度百菌清的缓释增效作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Slow-Release Synergistic Effect of Humic Acid on Low Concentration Chlorothalonil
  • 作者:魏世平 ; 吴萌 ; 李桂龙 ; 江春玉 ; 刘明 ; 陈瑞蕊 ; 李忠佩
  • 英文作者:WEI ShiPing;WU Meng;LI GuiLong;JIANG ChunYu;LIU Ming;CHEN RuiRui;LI ZhongPei;State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:腐殖酸 ; 百菌清 ; 等温微量热 ; 缓释增效作用
  • 英文关键词:humic acid;;chlorothalonil;;isothermal microcalorimetry;;slow-release synergistic effect
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室;中国科学院大学;
  • 出版日期:2019-01-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(41430859);; 江苏省自然科学基金面上项目(BK20181510);; 南京土壤研究所“一三五”计划和领域前沿项目(ISSASIP1642)
  • 语种:中文;
  • 页:ZNYK201901007
  • 页数:8
  • CN:01
  • ISSN:11-1328/S
  • 分类号:70-77
摘要
【目的】明确腐殖酸对低浓度(5 mg·L~(-1))百菌清(chlorothalonil)的缓释增效作用,为减少农药使用量、延长农药药效提供新的科学思路,为选择新的农药增效剂提供理论依据。【方法】将腐殖酸(50 mg·L~(-1))添加至低浓度百菌清中,进行尖镰孢(Fusarium oxysporum)的体外平板及液体培养,通过菌丝体生长试验及血球计数板、等温微量热技术,测定相应的抑菌率(inhibition rate,IR)、孢子体数量以及生长代谢过程中的热量排放。【结果】将对照抑菌率设定为0,腐殖酸-百菌清复配处理较百菌清处理的IR显著提高了10.29%(P<0.05),相对增效达到25.33%。液体摇菌培养过程中,摇菌培养的第3天,百菌清处理与腐殖酸-百菌清复配处理的孢子数无显著差异;摇菌培养第7天,百菌清处理的孢子数极显著低于其他处理(P<0.01);摇菌培养的第14天,腐殖酸-百菌清复配处理的孢子数显著低于其他处理(P<0.05),而百菌清处理与对照之间无显著差异,表明腐殖酸延长了低浓度百菌清对尖镰孢孢子数增加的抑制效应。各处理的热功率-时间曲线图显示,腐殖酸-百菌清复配处理热量排放曲线在监测的72 h内未检测到热排放峰;而单独添加百菌清的处理在试验的后期重新出现热排放峰;单独添加腐殖酸处理的热排放曲线与对照曲线接近。对热功率-时间曲线相关参数进一步分析,结果显示百菌清处理的Pmax(最大热功率)显著低于对照和腐殖酸处理(P<0.05),而Tmax(最大热功率时间)显著高于对照和腐殖酸处理(P<0.05);腐殖酸-百菌清复配处理的Pmax、Q(整体发热量)、k(生长速率常数)均显著低于其他处理(P<0.05),表明该处理病原菌的生长代谢活性显著低于其他处理,即病原菌生长代谢受到抑制的程度最大;腐殖酸处理与对照曲线各参数之间无显著差异,表明病原菌的生长代谢活性没有受到抑制,同时说明腐殖酸-百菌清复配处理中生长代谢受到的抑制作用与腐殖酸本身无关。【结论】添加腐殖酸可以显著提高低浓度百菌清对尖镰孢菌丝体生长、孢子体数量增加以及生长代谢过程中能量排放的抑制能力。将腐殖酸作为低浓度百菌清的农药增效剂,是降低百菌清用量及延长百菌清药效的有效措施。
        【Objective】The objective of this study is to clarify the slow-release synergistic effect of humic acid on low concentration(5 mg·L~(-1)) of chlorothalonil, provide a new scientific idea for reducing pesticide use and prolonging pesticide efficacy, and to provide a theoretical basis for selecting new fungicide synergists. 【Method】Fusarium oxysporum was cultured in vitro solid and liquid medium including low concentrations of chlorothalonil with or without 50 mg·L~(-1) humic acid addition. The inhibition rate(IR) and spore number were determined through mycelium growth test and blood counting chamber. The heat released during the growth and metabolism process of F. oxysporum was measured by isothermal microcalorimetry technology. 【Result】The IR of humic acid-chlorothalonil combined treatment significantly increased by 10.29%(P<0.05) when IR of control was set to 0. The relative synergism was 25.33%. During liquid shake culture, there was no significant difference in spore number between the chlorothalonil treatment and humic acid-chlorothalonil combined treatment on the 3 rd cultured day. On the 7 th cultured day, the spore number of chlorothalonil treatment was significantly lower than that of other treatments(P<0.01). On the 14 th cultured day, the spore number of humic acid-chlorothalonil combined treatment was significantly lower than other treatments(P<0.05), while there was no significant difference in spore number between chlorothalonil treatment and control. It showed that humic acid extended the inhibitory effect of low concentration chlorothalonil on the increase of spore number. The heat flow-time curve of each treatment showed that no heat release peak was detected in the humic acid-chlorothalonil combined treatment within 72 hours of monitoring, while that in the chlorothalonil treatment was found in later monitoring, and the heat flow-time curve of humic acid treatment was close to the control. Pmax(peak power) of the chlorothalonil treatment was significantly lower than that of the control and humic acid treatment(P<0.05), while the Tmax(peak power time) was significantly higher than that of the control and humic acid treatment(P<0.05). Pmax, Q(total heat evolution), and k(microbial growth rate constant) of the humic acid-chlorothalonil combined treatment were all significantly lower than other treatments(P<0.05), which indicated that the pathogen metabolic activity of the combinated treatment was significantly lower than that in other treatments. That is, the growth and metabolism of F. oxysporum were most inhibited. There was no significant difference in Pmax, Tmax, Q, and k between the humic acid treatment and control, that is, the inhibition effect of humic acid treatment on pathogen was not monitored, and which could verify that the inhibition effect of combined treatment was irrelevant to humic acid itself.【Conclusion】The addition of humic acid can significantly enhance the ability of low concentration chlorothalonil to inhibit the growth of mycelia, increase of spore number and heat emission during growth and metabolism process of F. oxysporum. Using humic acid as a fungicide synergist of chlorothalonil is an effective measure to reduce the amount of chlorothalonil and extend the efficacy.
引文
[1]张述义,李新凤,韦晓艳,王建明.33株尖孢镰刀菌遗传多样性的ISSR分析.生态学杂志,2013,32(5):1195-1202.ZHANG S Y,LI X F,WEI X Y,WANG J M.Genetic diversity of 33Fusarium oxysporum strains:An ISSR analysis.Chinese Journal of Ecology,2013,32(5):1195-1202.(in Chinese)
    [2]LI X G,BOER W D,ZHANG Y N,DING C F,ZHANG T L,WANGX X.Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea.Soil Biology and Biochemistry,2018,116:120-130.
    [3]伊海静,陈艳,刘正坪,王有年,杨晓,刘俊.草莓枯萎病菌的分离鉴定及防治药剂筛选.西北农业学报,2016,25(4):626-635.YI H J,CHEN Y,LIU Z P,WANG Y N,YANG X,LIU J.Isolation and identification of strawberry Fusarium wilt pathogen and fungicides screening.Acta Agriculturae Boreali-occidentalis Sinica,2016,25(4):626-635.(in Chinese)
    [4]ARUL DHAS D,HUBERT JOE I,ROY S D D,FREEDA T H.DFTcomputations and spectroscopic analysis of a pesticide:Chlorothalonil.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,77(1):36-44.
    [5]ZHANG H,NIE Y,ZHANG S Q,WANG W Z,LI H D,WANG F G,LV X,CHEN Z L.Monitoring and probabilistic risk assessment of chlorothalonil residues in vegetables from Shandong province(China).Regulatory Toxicology and Pharmacology,2016,80:41-45.
    [6]WANG J,CHOW W,CHANG J,WONG J W.Development and validation of a qualitative method for target screening of 448 pesticide residues in fruits and vegetables using UHPLC/ESI Q-orbitrap based on data-independent acquisition and compound database.Journal of Agricultural and Food Chemistry,2017,65(2):473-493.
    [7]张国生,汪灿明,郑瑞琴.浅谈农药增效剂现状及应用前景.浙江化工,2000,31(4):18-20.ZHANG G S,WANG C M,ZHENG R Q.Brief discussion in current situation and application prospect of pesticide synergist.Zhejiang Chemical Industry,2000,31(4):18-20.(in Chinese)
    [8]胡绍海,胡卫军,胡卫东,张志成,周社文.茶皂素在化学农药乳油剂中增效作用研究.中国农业科学,1998,31(2):30-35.HU S H,HU W J,HU W D,ZHANG Z C,ZHOU S W.Study on the synergism of tea saponin in the chemical insectcides EC.Scientia Agricultura Sinica,1998,31(2):30-35.(in Chinese)
    [9]于宏伟,段书德,牛辉,张东红.绿色农药增效剂的研究进展.江苏农业科学,2010(2):142-143,167.YU H W,DUAN S D,NIU H,ZHANG D H.Progress in research on green pesticide synergist.Jiangsu Agricultural Sciences,2010(2):142-143,167.(in Chinese)
    [10]叶长东.一种包含黄腐酸的农药增效组合物及其用途:CN102626106 A[P].(2012-08-08)[2018-07-10].YE C D.Fulvic acid-containing pesticide synergistic composition and use thereof:CN 102626106 A[P].(2012-08-08)[2018-07-10].(in Chinese)
    [11]RADHIKA S,SAHAYARAJ K,SENTHIL-NATHAN S,HUNTER WB.Individual and synergist activities of monocrotophos with neem based pesticide,Vijayneem against Spodoptera litura Fab.Physiological and Molecular Plant Pathology,2018,101:54-68.
    [12]李善祥.腐植酸类物质与农药--研究应用与展望.腐植酸,2002(2):17-25.LI S X.Progress in research and application on interaction between humic substances and pesticides.Humic Acid,2002(2):17-25.(in Chinese)
    [13]王天立,赵永德,赵颖,邢黎.黄腐酸对防治蔬菜病害的增效作用.河南化工,1995(4):31-32.WANG T L,ZHAO Y D,ZHAO Y,XING L.Synergistic effect of fulvic acid on vegetable disease prevention.Henan Chemical Industry,1995(4):31-32.(in Chinese)
    [14]王任明,张岩峰.黄腐酸对农药杀虫脒的增效作用初探.江西化工,2001(1):38-40.WANG R M,ZHANG Y F.The positive effect of the yellow humic acid to the pesticide.Jiangxi Chemical Industry,2001(1):38-40.(in Chinese)
    [15]金平,陶波,张淑华.腐殖酸对克露增效作用的生理机制初探.东北农业大学学报,2003,34(1):7-9.JIN P,TAO B,ZHANG S H.The initial study on the biological mechanism of the humic acid to improve the effect of cours.Journal of Northeast Agricultural University,2003,34(1):7-9.(in Chinese)
    [16]MANNECK T,BRAISSANT O,HAGGENMULLER Y,KEISER J.Isothermal microcalorimetry to study drugs against Schistosoma mansoni.Journal of Clinical Microbiology,2011,49(4):1217-1225.
    [17]TAFIN U F,ORASCH C,TRAMPUZ A.Activity of antifungal combinations against Aspergillus species evaluated by isothermal microcalorimetry.Diagnostic Microbiology and Infectious Disease,2013,77:31-36.
    [18]WU M,SONG M Y,LIU M,JIANG C Y,LI Z P.Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence.Scientific Reports,2016,6:32858.
    [19]WEI S P,WU M,LI G L,LIU M,JIANG C Y,LI Z P.Fungistatic activity of multiorigin humic acids in relation to their chemical structure.Journal of Agricultural and Food Chemistry,2018,66(28):7514-7521.
    [20]何笃贵,李强国,杨德俊,李旭,叶丽娟,魏得良,黄熠,张辉,刘义.RE(C7H5O3)2(C9H6NO)配合物抗真菌作用的热动力学研究.中国稀土学报,2007,25(1):107-110.HE D G,LI Q G,YANG D J,LI X,YE L J,WEI D L,HUANG Y,ZHANG H,LIU Y.Thermokinetics study of antifungal functions of complexes of rare earths with salicylic acid and 8-hydroxyquinoline.Journal of the Chinese Rare Earth Society,2007,25(1):107-110.(in Chinese)
    [21]BARROS N,GOMEZ-ORELLANA I,FEIJOO S,BALSA R.The effect of soil moisture on soil microbial activity studied by microcalorimetry.Thermochimica Acta,1995,249:161-168.
    [22]冯有智,林先贵.微量热法在土壤微生物研究中的应用进展.土壤,2012,44(4):535-540.FENG Y Z,LIN X G.Advances in the application of microcalorimetry in soil microbiology research.Soils,2012,44(4):535-540.(in Chinese)
    [23]JING Z W,CHEN R R,WEI S P,FENG Y Z,ZHANG J W,LIN X G.Response and feedback of C mineralization to P availability driven by soil microorganisms.Soil Biology and Biochemistry,2017,105:111-120.
    [24]DOSKOCIL L,GRASSET L,VALKOVA D,PEKAR M.Hydrogen peroxide oxidation of humic acids and lignite.Fuel,2014,134:406-413.
    [25]FAN H M,WANG X W,SUN X,LI Y Y,SUN X Z,ZHENG C S.Effects of humic acid derived from sediments on growth,photosynthesis and chloroplast ultrastructure in chrysanthemum.Scientia Horticulturae,2014,177:118-123.
    [26]TANG Y,YANG Y,CHENG D,GAO B,WAN Y,LI Y C.Value-added humic acid derived from lignite using novel solid-phase activation process with Pd/CeO2 nanocatalyst:A physiochemical study.ACS Sustainable Chemistry and Engineering,2017,5(11):10099-10110.
    [27]ABDEL-MONAIM M F,ISMAIL M E,MORSY K M.Induction of systemic resistance of benzothiadiazole and humic acid in soybean plants against Fusarium wilt disease.Mycobiology,2011,39(4):290-298.
    [28]杨谦.植物病原菌抗药性分子生物学.2版.北京:科学出版社,2011.YANG Q.Molecular Biology in Resistance of Plant Pathogen to Fungicide.2nd ed.Beijing:Science Press,2011.(in Chinese)
    [29]付国良,黄晓红.甘油醛-3-磷酸脱氢酶功能的研究进展.生物物理学报,2013,29(3):181-191.FU G L,HUANG X H.Progress on research of functions of glyceraldehyde-3-phosphate dehydrogenase.Acta Biophysica Sinica,2013,29(3):181-191.(in Chinese)
    [30]BRAISSANT O,KEISER J,MEISTER I,BACHMANN A,WIRZ D,GOPFERT B,BONKAT G,WADSO I.Isothermal microcalorimetry accurately detects bacteria,tumorous microtissues,and parasitic worms in a label-free well-plate assay.Biotechnology Journal,2015,10(3):460-468.
    [31]姜兰兰,刘燕,郑世学.等温微量热技术在土壤微生物学研究中的应用.应用与环境生物学报,2016,22(4):732-738.JIANG L L,LIU Y,ZHENG S X.Applications of isothermal microcalorimetry in study on soil microbial activity.Chinese Journal of Applied and Environmental Biology,2016,22(4):732-738.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700