拦截大气层内机动目标的自适应积分滑模制导律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adaptive Integral Sliding-Mode Guidance Law for Intercepting Endo-Atmospheric Maneuvering Targets
  • 作者:黄景帅 ; 张洪波 ; 汤国建 ; 包为民
  • 英文作者:HUANG Jing-shuai;ZHANG Hong-bo;TANG Guo-jian;BAO Wei-min;College of Aerospace Science and Engineering,National University of Defense Technology;China Aerospace Science and Technology Corporation;
  • 关键词:导弹制导 ; 机动目标 ; 积分滑模面 ; 自适应算法 ; 有限时间收敛
  • 英文关键词:Missile guidance;;Maneuvering target;;Integral sliding-mode surface;;Adaptive algorithm;;Finite-time convergence
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:国防科技大学空天科学学院;中国航天科技集团有限公司;
  • 出版日期:2019-01-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:航天科学技术基金(2017-HT-GF-07)
  • 语种:中文;
  • 页:YHXB201901006
  • 页数:10
  • CN:01
  • ISSN:11-2053/V
  • 分类号:55-64
摘要
针对大气层内机动目标拦截的末制导问题,提出了一种自适应积分滑模制导律。基于抑制弹目视线旋转的原则,设计了一种视线转率收敛速率可调的跟踪剖面,选取跟踪误差与其积分为状态变量,采用状态有限时间收敛的积分滑模面与快速趋近律推导得到了积分滑模制导律。为了处理未知的目标机动项,提出了一种自适应算法,对目标机动项上界的平方进行估计,构成了自适应积分滑模制导律,并证明了其有限时间收敛的特性,给出了各状态变量的收敛域。最后,将制导律转换成适用于大气层内拦截的形式。仿真结果表明,所提制导律能够精确拦截机动目标,剖面跟踪误差收敛速度快,过载分布均匀,能量消耗少,并具有良好的噪声特性,易于工程实现。
        In terms of the terminal guidance of intercepting the endoatmospheric maneuvering targets,an adaptive integral sliding-mode guidance law is presented. Based on the principle of suppressing the rotation of the line of sight from a missile to a target,a tracking profile is designed where the convergence rate of the line of sight can be regulated. The tracking error and its integral are selected as the state variables. An integral sliding-mode surface of the states converging to zero in finite time and a rapid reaching law are used to derive an integral sliding-mode guidance law. To deal with an unknown target maneuver,an adaptive algorithm is proposed to estimate the square of the upper bound of the target maneuver,and then the adaptive integral sliding-mode guidance law is constructed. The finite-time convergence characteristic of the law is proven,and the convergence regions are given of the state variables. Finally,the guldance law is converted into the corresponding form suitable for the endoatmosphenc interception. The simulation results indicate that the proposed guidance law can precisely intercept the maneuvering targets and the convergence rate is rapid of the tracking error. The overload distribution is reasonable,and less energy is consumed. Furthermore,the law possesses good profile noise characteristics and is easy to be implemented in practice.
引文
[1] Shneydor N A. Missile guidance and pursuit:kinematics,dynamics and control[M]. Chichester:Horwood Publishing,1998:101-124.
    [2] Zarchan P. Tactical and strategic missile guidance[M].Reston, Virginia:American Institute of Aeronautics and Astronautics,2012:163-171.
    [3] Zhou D,Mu C M,Xu W L. Adaptive sliding-mode guidance of a homing missile[J]. Journal of Guidance, Control, and Dynamics,1999,22(4):589-594.
    [4] Moon J,Kim K,Kim Y. Design of missile guidance law via variable structure control[J]. Journal of Guidance,Control,and Dynamics,2001,24(4):659-664.
    [5]孙胜,周荻.有限时间收敛变结构制导律[J].宇航学报,2008,29(4):1258-1262.[Sun Sheng,Zhou Di. A finite time convergent variable structure guidance law[J]. Journal of Astronautics,2008,29(4):1258-1262.]
    [6] Zhou D,Sun S. Guidance laws with finite time convergence[J].Journal of Guidance,Control,and Dynamics,2009,32(6):1838-1846.
    [7] Shin H S,Tsourdos A,Li K B. A new three-dimensional sliding mode guidance law variation with finite time convergence[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(5):2221-2232.
    [8] Kumar S R,Rao S,Ghose D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J].Journal of Guidance,Control,and Dynamics,2012,35(4):1230-1246.
    [9] Zhang Z X,Man C Y,Li S H,et al. Finite-time guidance laws for three-dimensional missile-target interception[J]. Proceedings of the Institute of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016,230(2):392-403.
    [10] Ma Y W,Zhang W H. Differential geometric guidance command with finite time convergence using extended state observer[J].Journal of Central South University,2016,23(4):859-868.
    [11] Si Y J, Song S M. Adaptive reaching law based threedimensional finite-time guidance law against maneuvering targets with input saturation[J]. Aerospace Science and Technology,2017,70:198-210.
    [12]董飞垚,雷虎民,李囧,等.拦截弹自适应最优滑模制导和控制一体化设计[J].宇航学报,2013,34(11):1456-1461.[Dong Fei-yao, Lei Hu-min, Li Jiong, et al. Design of integrated adaptive optimal sliding-mode guidance and control for interceptor[J]. Journal of Astronautics,2013,34(11):1456-1461.]
    [13] Wang X H,Wang J Z. Partial integrated guidance and control with impact angle constraints[J]. Journal of Guidance,Control,and Dynamics,2015,38(5):925-936.
    [14] Wang J,He X M. Optimal integrated sliding mode guidance law based on generalized model predictive control[J]. Proceedings of the Institute of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2016,230(7):392-403.
    [15] Zhou J L,Yang J Y. Smooth sliding mode control for missile interception with finite-time convergence[J]. Journal of Guidance,Control,and Dynamics,2015,38(7):1311-1318.
    [16] Li K B,Chen L,Bai X Z. Differential geometric modeling of guidance problem for interceptors[J]. Science China Technological Sciences,2011,54(9):2283-2295.
    [17] Zhang Z X,Li S H,Luo S. Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J].Aerospace Science and Technology,2013,31(1):30-41.
    [18] Yu S. H,Yu X H,Shirinzadeh B,et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica,2005,41(11):1957-1964.
    [19] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems,2005,17(2):101-127.
    [20]赵斌,周军,卢晓东,等.考虑终端角度约束的自适应积分滑模制导律[J].控制与决策,2017,32(11):1966-1972.[Zhao Bin,Zhou Jun,Lu Xiao-dong,et al. Adaptive integral sliding mode guidance law considering impact angle constraint[J]. Control and Decision,2017,32(11):1966-1972.]
    [21] Li K B,Chen L,Tang G J. Improved differential geometric guidance commands for endoatmospheric interception of highspeed targets[J]. Science China Technological Sciences,2013,56(2):518-528.
    [22] Li K B,Chen L,Tang G J. Algebraic solution of differential geometric guidance command and time delay control[J]. Science China Technological Sciences,2015,58(3):565-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700