W-Re二元合金弹性和热力学性质的第一性原理计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-principles Calculation of Elastic and Thermodynamic Properties of W-Re Binary Alloy
  • 作者:宋政骢 ; 米国发 ; 王有超 ; 刘晨 ; 历长云
  • 英文作者:SONG Zhengcong;MI Guofa;WANG Youchao;LIU Chen;LI Changyun;School of Materials Science and Engineering, Henan Polytechnic University;
  • 关键词:W-Re二元合金 ; 弹性性能 ; 热力学性能 ; 第一性原理
  • 英文关键词:W-Re binary alloy;;elastic properties;;thermodynamic properties;;first-principles
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:河南理工大学材料科学与工程学院;
  • 出版日期:2019-07-18
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:河南省自然科学基金(182300410266)~~
  • 语种:中文;
  • 页:CLDB201916029
  • 页数:8
  • CN:16
  • ISSN:50-1078/TB
  • 分类号:158-165
摘要
本工作采用基于密度泛函理论的第一性原理方法从原子尺度对不同成分W-Re二元合金的弹性性能和热力学性能进行了研究。根据特殊准随机模型构建不同成分合金的无序固溶体模型,并对其晶格结构进行了优化。计算结果表明,随着固溶体中Re原子浓度的增加,生成焓和结合能的数值变大,固溶体越难生成,固溶体的稳定性越差。通过电子态密度对固溶体稳定性进行了解释。采用应力-应变法对优化后结构的独立弹性常数进行计算,结果表明,本工作构建的所有固溶体均满足力学稳定性判据。根据V-R-H(Voigt-Reuss-Hill)近似对固溶体各项力学常数进行计算,结果表明,随着固溶体中Re原子浓度的增大,其体模量不断增大,剪切模量和杨氏模量不断减小。由各脆韧性判据可知,各固溶体均呈韧性,且提高Re原子的浓度会提升固溶体的韧性。最后在准谐近似的基础上计算不同成分合金的声子谱和相应的声子态密度,W_(12)Re_4声子谱中存在大量虚频,表明该结构不能稳定存在。本工作可为W-Re合金的相关实验研究和实际生产提供一定的参考。
        In this work, the first-principles method based on density functional theory was used to study the elastic and thermodynamic properties of W-Re binary alloys with different compositions. According to the special quasi-random model, the disordered solid solution model of solid solution alloys was constructed and its lattice structure was optimized. The results showed that, the value of enthalpy and binding energy was increasing, and the solid solution was more difficult to form, the stability of solid solution was worse as the concentration of Re atoms in the solid solution increasing. The electronic level density was used to explain its stability. Then, the stress-strain method was used to calculate the independent elastic constant of the optimized structure. It was verified that the solid solutions constructed satisfy the mechanical stability criterion in this work. The mechanical constants of the solid solution were calculated according to the V-R-H(Voigt-Reuss-Hill) approximation, and the results showed that the bulk modulus of the solid solution increased, and the shear modulus and Young's modulus decreased with the increase of the concentration of Re. Each solid solution showed toughness, according to the brittleness and toughness criterion, the toughness of the solid solution was increased by increasing the concentration of Re atoms. Finally, based on the quasi-harmonic approximation, the phonon spectra and the corresponding phonon densities of states of alloys with different composition were calculated.There was a large number of virtual frequencies in the W_(12)Re_4 phonon spectrum, which indicates that the structure is unstable. The calculation and research in this work can provide some references for the relevant experimental research and practical production of W-Re alloys.
引文
1 Yuan Bo,Li Zhongshan,Liu Liangxian,et al.China Mining Magazine,2016(1),15 (in Chinese).袁博,李钟山,刘良先,等.中国矿业,2016(1),15.
    2 Jia Chengchang,Zhou Wuping.Metal World,2012(6),11 (in Chinese).贾成厂,周武平.金属世界,2012(6),11.
    3 Zhou H,Li Y,Lu G.Computational Materials Science,2016,112,487.
    4 Zhang N,Zhang Y,Zhang P,et al.Applied Physics Express,2018,11(1),15801.
    5 Shi Yingjiang.Rare Metal Materials and Engineering,1993(6),12 (in Chinese).石应江.稀有金属材料与工程,1993(6),12.
    6 Kaufmann M,Neu R.Fusion Engineering and Design,2007,82(5),521.
    7 Fu Jie,Li Zhongkui,Zheng Xin,et al.Materials China,2005,24(7),11 (in Chinese).付洁,李中奎,郑欣,等.稀有金属快报,2005,24(7),11.
    8 Wang Yujin,Zhang Taiquan,Zhou Yu,et al.Rare Metal Materials and Engineering,2009(S1),65 (in Chinese).王玉金,张太全,周玉,等.稀有金属材料与工程,2009(S1),65.
    9 Crivello J,Joubert J.Journal of Physics:Condensed Matter,2010,22(3),35402.
    10 Vk Sikka J M.Metallurgical Transactions,1974,5(6),1514.
    11 Wei N,Jia T,Zhang X,et al.AIP Advances,2014,4(5),57103.
    12 Jiang C.Acta Materialia.2009,57(16),4716.
    13 Rajagopal A K.Physical Review B,1973,7(5),1912.
    14 Kohn W S L.Physical Review,1965,140(4A),A1133.
    15 Zhang N,Zhang Y,Yang Y,et al.The European Physical Journal B,2017,90(5),1.
    16 Zhou H,Ou X,Zhang Y,et al.Journal of Nuclear Materials,2013,440(1-3),338.
    17 Kresse G.Journal of Non-Crystalline Solids,1995,192-193,222.
    18 Kresse G,Furthmüller J.Computational Materials Science,1996,6(1),15.
    19 Bl?chl P.Physical Review B,1994,50(24),17953.
    20 Perdew J P,Burke K,Ernzerhof M.Physical Review Letters,1996,77(18),3865.
    21 Kresse G,Furthmuller J.Physical Review B,1996,54(16),11169.
    22 Togo A,Tanaka I.Scripta Materialia,2015,108,1.
    23 Birch F.Physical Review,1947,71(11),809.
    24 Pugh S F.The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1954,45(367),823.
    25 Liu Jiqiong,Lu Xiaogang.Shanghai Metals,2017(1),75 (in Chinese).刘继琼,鲁晓刚.上海金属,2017(1),75.
    26 Zhou D,Liu J,Peng P.Transactions of Nonferrous Metals Society of China,2011,21(12),2677.
    27 Wang Guodong,Xu Jiang.China Science and Technology Information,2014(5),59 (in Chinese).王国栋,徐江.中国科技信息,2014(5),59.
    28 Kushwah S S,Sharma M P,Tomar Y S.Physica B:Condensed Matter,2003,339(4),193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700