亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conduits anatomical structure and leaf traits of diffuse-and ring-porous stems in subtropical evergreen broad-leaved forests
  • 作者:张振振 ; 赵平 ; 张锦秀 ; 斯瑶
  • 英文作者:ZHANG Zhen-Zhen;ZHAO Ping;ZHANG Jin-Xiu;SI Yao;School of Geography and Environmental Sciences, Zhejiang Normal University;South China Botanical Garden, Chinese Academy of Sciences;
  • 关键词:环孔 ; 散孔 ; 叶片特征 ; 生存策略 ; 亚热带森林
  • 英文关键词:ring-porous;;diffuse-porous;;leaf trait;;survival strategy;;subtropical forest
  • 中文刊名:ZWSB
  • 英文刊名:Chinese Journal of Plant Ecology
  • 机构:浙江师范大学地理与环境科学学院;中国科学院华南植物园;
  • 出版日期:2019-02-20
  • 出版单位:植物生态学报
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金(41630752和41701226);; 浙江省公益技术研究计划项目(GF19C030003)~~
  • 语种:中文;
  • 页:ZWSB201902005
  • 页数:8
  • CN:02
  • ISSN:11-3397/Q
  • 分类号:51-58
摘要
植物导管结构特征对其自身的生存策略具有重要影响,但目前对于亚热带常绿阔叶林树种这方面的认识仍然不足。为了研究这一地区的植物导管特征与叶片功能性状之间的关系,该研究选择广东石门台自然保护区亚热带森林中两种优势种桂林栲(Castanopsis chinensis)和木荷(Schima superba),通过比较旱季(10月至次年3月)两树种的导管形态特征、叶片形态特征、叶片生理特征来研究环孔材树种和散孔材树种的功能性状差异。用独立样本t检验对两个树种的这些性状进行差异性分析。结果表明:1)木荷(散孔)导管密度显著高于桂林栲(环孔),而桂林栲导管的直径远大于木荷导管的直径。2)木荷叶片含水量(LWC)、叶绿素a/b值显著大于桂林栲,而气孔密度和比叶面积则显著低于桂林栲,两者气孔导度和光合速率并没有显著差异。以上结果表明,在亚热带森林中,环孔材树种桂林栲在温度高湿度低的干旱条件下,能够通过增加叶片比叶面积维持较高的光合能力,而另一方面,其叶片对干旱胁迫的耐受性较弱,而散孔材木荷则具有较好的光能转化能力和干旱耐受能力,这种差异性在降水格局变化逐渐加深的背景下,可能会引起森林群落结构发生分化。
        Aims The conduits characters are critical for plants to develop their survival strategies. Our current knowledge in this regard remains limited for the subtropical forest. In this study, we set a study objective to quantify the relationship between the conduits characters and the leaf functional traits of the dominant species in the region.Methods Two dominant species, Castanopsis chinensis and Schima superba, in a subtropical forest in Shimentai Nature Reserve were selected to compare their differences in functional traits, including conduits anatomical structure, the leaf morphological characteristics, and leaf physiological characteristics. The study was conducted during the dry season(October to March of the following year) for quantifying the ring-porous and diffuse-porous species. A series of t-tests were performed to quantify the statistical differences of all traits between the two species.Important findings We found that the density of conduits of S. superba(diffuse-porous) was significantly higher than that of C. chinensis(ring-porous), while the diameter of conduits for C. chinensis was much larger than that of S. superba. The leaf water content and the Chlorophyll a/Chlorophyll b ratio were much higher for S. superba than that of C. chinensis; the stomatal density and specific leaf area(SLA) tended to be higher in C. chinensis. In addition, it appeared that the differences in leaf specific net photosynthetic rates and the leaf stomatal conductance were not significant between S. superba and C. chinensis. These results indicated that the ring-porous species C. chinensis maintain a high photosynthetic capacity by maintaining a higher SLA at the expense of low leaf water content in responding to the water stress. The diffuse-porous species S. superba, meanwhile, tended to maintain a high capability of light transform under drought. These functional differences might be responsible for the succession pathways under the gradual changes of global precipitation for the region.
引文
Arnon DI(1949).Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris.Plant Physiology,24,1-15.
    Blonder B,Vasseur F,Violle C,Shipley B,Enquist BJ,Vile D(2015).Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana.AoB Plants,7,plv049.DOI:10.1093/aobpla/plv049.
    Breshears DD,Myers OB,Meyer CW,Barnes FJ,Zou CB,Allen CD,Mc Dowell NG,Pockman WT(2009).Tree die-off in response to global change-type drought:Mortality insights from a decade of plant water potential measurements.Frontiers in Ecology and the Environment,7,185-189.
    Brodribb TJ,Holbrook NM,Edwards EJ,Gutiérrez MV(2010).Relations between stomatal closure,leaf turgor and xylem vulnerability in eight tropical dry forest trees.Plant,Cell&Environment,26,443-450.
    Büssis D,von Groll U,Fisahn J,Altmann T(2006).Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions.Functional Plant Biology,33,1037-1043.
    Chave J,Coomes D,Jansen S,Lewis SL,Swenson NG,Zanne AE(2009).Towards a worldwide wood economics spectrum.Ecology Letters,12,351-366.
    D?a?z S,Cabido M(2001).Vive la différence:Plant functional diversity matters to ecosystem processes.Trends in Ecology&Evolution,16,646-655.
    Díaz S,Cabido M,Casanoves F(1998).Plant functional traits and environmental filters at a regional scale.Journal of Vegetation Science,9,113-122.
    Drake PL,Froend RH,Franks PJ(2013).Smaller,faster stomata:Scaling of stomatal size,rate of response,and stomatal conductance.Journal of Experimental Botany,64,495-505.
    Esteban R,García-Plazaola JI,Hernández A,Fernández-Marín B(2018).On the recalcitrant use of Arnon’s method for chlorophyll determination.New Phytologist,217,474-476.
    Fichot R,Chamaillard S,Depardieu C,Le Thiec D,Cochard H,Barigah TS,Brignolas F(2010).Hydraulic efficiency and coordination with xylem resistance to cavitation,leaf function,and growth performance among eight unrelated Populus deltoides×Populus nigra hybrids.Journal of Experimental Botany,62,2093-2106.
    Franks PJ,Drake PL,Beerling DJ(2009).Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density:An analysis using Eucalyptus globulus.Plant,Cell&Environment,32,1737-1748.
    Hulot FD,Lacroix G,LeschermoutouéF,Loreau M(2000).Functional diversity governs ecosystem response to nutrient enrichment.Nature,405,340-344.
    Keyvan S(2010).The effects of drought stress on yield,relative water content,proline,soluble carbohydrates and chlorophyll of bread wheat cultivars.Journal of Animal and Plant Sciences,8,1051-1060.
    Klein T(2014).The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours.Functional Ecology,28,1313-1320.
    Li K(2011).Community Structure and Leaf Characteristics of a Secondary Broad Leaved Forest in Hilly Area of Central Hunan,China.Master degree dissertation,Central South University of Forestry and Technology,Changsha.[李凯(2011).湘中丘陵区次生阔叶林群落结构及叶片特征研究.硕士学位论文,中南林业科技大学,长沙.]
    Li MC,Zhu JJ,Sun YR(2009).Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity.Chinese Journal of Ecology,28,1437-1442.[李明财,朱教君,孙一荣(2009).东北次生林主要树种比叶面积对光照强度的响应.生态学杂志,28,1437-1442.]
    Li WJ,Zuo JQ,Song YL,Liu JP,Li Y,Shen YS,Li JX(2015).Changes in spatio temporal distribution of drought/flood disaster in southern China under global climate warming.Meteorological Monthly,41,261-271.[李维京,左金清,宋艳玲,刘景鹏,李瑜,沈雨旸,李景鑫(2015).气候变暖背景下我国南方旱涝灾害时空格局变化.气象,41,261-271.]
    Matheny AM,Bohrer G,Vogel CS,Morin TH,He L,Frasson RPDM,Mirfenderesgi G,Sch?fer KVR,Gough CM,Ivanov VY(2014).Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest.Journal of Geophysical Research Biogeosciences,119,2292-2311.
    Milcu A,Allan E,Roscher C,Jenkins T,Meyer ST,Flynn D,Bessler H,Buscot F,Engels C,Gubsch M(2013).Functionally and phylogenetically diverse plant communities key to soil biota.Ecology,94,1878-1885.
    Niu CY,Meinzer FC,Hao GY(2017).Divergence in strategies for coping with winter embolism among co-occurring temperate tree species:The role of positive xylem pressure,wood type and tree stature.Functional Ecology,31,1550-1560.
    Pérezharguindeguy N,Díaz S,Garnier E,Lavorel S,Poorter H,Jaureguiberry P,Bretharte MS,Cornwell WK,Craine JM,Gurvich DE(2013).New handbook for standardised measurement of plant functional traits worldwide.Australian Journal of Botany,61,167-234.
    Peters EB,Mcfadden JP,Montgomery RA(2015).Biological and environmental controls on tree transpiration in a suburban landscape.Journal of Geophysical Research Biogeosciences,115,G04006.DOI:10.1029/2009JG001266.
    Poorter L,Mcdonald I,Alarcón A,Fichtler E,Licona JC,Pe-?a-Claros M,Sterck F,Villegas Z,Sass-Klaassen U(2010).The importance of wood traits and hydraulic conductance for the performance and life history strategies of42 rainforest tree species.New Phytologist,185,481-492.
    Sack L,Holbrook NM(2006).Leaf hydraulics.Annual Review of Plant Biology,57,361-381.
    Sperry JS,Nichols KL,Sullivan JEM,Eastlack SE(1994).Xylem embolism in ring-porous,diffuse-porous,and coniferous trees of northern Utah and interior Alaska.Ecology,75,1736-1752.
    Sperry JS,Pockman WT(1993).Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis.Plant,Cell&Environment,16,279-287.
    Steppe K,Lemeur R(2007).Effects of ring-porous and diffuseporous stem wood anatomy on the hydraulic parameters used in a water flow and storage model.Tree Physiology,27,43-52.
    Takahashi S,Okada N,Nobuchi T(2013).Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species.Ecological Research,28,615-624.
    Tateishi M,Kumagai TO,Utsumi Y,Umebayashi T,Shiiba Y,Inoue K,Kaji K,Cho K,Otsuki K(2008).Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood:Comparisons with anatomical observations.Trees,22,23-30.
    von Allmen EI,Sperry JS,Bush SE(2013).Contrasting wholetree water use,hydraulics,and growth in a co-dominant diffuse-porous vs.ring-porous species pair.Trees,29,717-728.
    Wang J,Ives NE,Lechowicz MJ(1992).The relation of foliar phenology to xylem embolism in trees.Functional Ecology,6,469-475.
    Wardle DA,Barker GM,Bonner KI,Nicholson KS(1998).Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?Journal of Ecology,86,405-420.
    Westoby M,Falster DS,Moles AT,And PAV,Wright IJ(2002).Plant ecological strategies:Some leading dimensions of variation between species.Annual Review of Ecology&Systematics,33,125-159.
    Wright IJ,Ackerly DD,Bongers F,Harms KE,IbarraManriquez G,Martinez-Ramos M,Mazer SJ,MullerLandau HC,Paz H,Pitman NCA,Poorter L,Silman MR,Vriesendorp CF,Webb CO,Westoby M,Wright SJ(2007).Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests.Annals of Botany,99,1003-1015.
    Yan DL,Ren YY,Lian JF,Sheng LJ(2012).Leaf functional traits and their associated characteristics of three dominant families.Journal of Forestry Engineering,26(3),34-37.[闫道良,任燕燕,连俊方,盛琳杰(2012).3个优势科树种叶功能性状及其关联特性.林业工程学报,26(3),34-37.]
    Zeng XM,Zhao P,Ouyang L,Zhu LW,Ni GY,Zhao XH(2017).Soil water use and adaptive regulation of Schima superba in the dry and wet seasons.Journal of Tropical and Subtropical Botany,25(2),105-114.[曾小敏,赵平,欧阳磊,朱丽薇,倪广艳,赵秀华(2017).荷木对干湿季土壤水分的利用和适应性调节.热带亚热带植物学报,25(2),105-114.]
    Zeng XL,Wang DW,Liu JP,Wang SS,Fan X(2015).Effects of slope orientation on apparent traits and chlorophyll content of three cold-season turfgrasses.Grass Science,32,1823-1831.[曾晓琳,王大伟,刘金平,王思思,范宣(2015).坡向对3种冷季型草坪草表观性状及叶绿素含量的影响.草业科学,32,1823-1831.]
    Zeng XP,Zhao P,Cai XA,Rao XQ,Liu H,Ma L,Li CH(2006).A preliminary study on the tolerance of 25 species of South Asian tropical plants.Journal of Beijing Forestry University,28(4),92-99.[曾小平,赵平,蔡锡安,饶兴权,刘惠,马玲,李长洪(2006).25种南亚热带植物耐阴性的初步研究.北京林业大学学报,28(4),92-99.]
    Zhang JL,Poorter L,Cao KF(2012).Productive leaf functional traits of Chinese savanna species.Plant Ecology,213,1449-1460.
    Zhou G,Wei X,Wu Y,Liu S,Huang Y,Yan J,Zhang D,Zhang Q,Liu J,Meng Z,Wang C,Chu G,Liu S,Tang X,Wang C(2011).Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China.Global Change Biology,17,3736-3746.
    Zhu L,Hu Y,Zhao X,Zeng X,Zhao P,Zhang Z,Ju Y(2017).The impact of drought on sap flow of cooccurring Liquidambar formosana Hance and Quercus variabilis Blume in a temperate forest,Central China.Ecohydrology,10,1828.DOI:10.1002/eco.1828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700