超薄柔性透射型超构材料吸收器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrathin flexible transmission metamaterial absorber
  • 作者:杨鹏 ; 秦晋 ; 徐进 ; 韩天成
  • 英文作者:Yang Peng;Qin Jin;Xu Jin;Han Tian-Cheng;School of Physical Science and Technology, Southwest University;
  • 关键词:超构材料吸收器 ; 超薄柔性 ; 双频吸收 ; 高效透射
  • 英文关键词:metamaterial absorber;;ultrathin flexibility;;dual-band absorption;;efficient transmission
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西南大学物理科学与技术学院;
  • 出版日期:2019-04-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:重庆市自然科学基金(批准号:cstc2018jcyjA0572);; 国家级大学生创新创业训练计划(批准号:201810635040)资助的课题~~
  • 语种:中文;
  • 页:WLXB201908027
  • 页数:6
  • CN:08
  • ISSN:11-1958/O4
  • 分类号:242-247
摘要
设计并加工了一种超薄柔性透射型吸收器,总体厚度为0.288 mm,可实现柔性弯曲,容易做到与曲面目标共形.该吸收器由三层结构组成,底层是金属光栅,中间为介质层,表面单元由两条平行放置的尺寸不同的金属线组成.仿真和实验结果表明,对横电波在5和7 GHz的吸收分别达到97.5%和96.0%,对横磁波在3.0—6.5 GHz都能保持90%以上的透射率.两个吸收频点可分别独立调节,增加了设计的灵活性.另外,当入射角增大到60°时,该吸收器的性能基本不受影响,表现出良好的广角特性.
        As an important branch of metamaterial-based devices, metamaterial absorber(MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, high efficiency and tunable property, MA has been widely concerned in energy-harvesting and electromagnetic stealth. Since the first demonstration of MA in 2008, many MAs have been extensively studied in different regions, such as microwave frequency, THz, infrared frequency and optical frequency. At the same time, the absorber has been extended from the single-band to the dual-band, triple-band, multiple-band and broadband. In recent years, the dual-band absorber has received significant attention and has been widely studied. So far, however, most of MAs are composed of a bottom continuous metallic layer, which prevents electromagnetic waves from penetrating and makes electromagnetic waves absorbed or reflected.In this paper, an ultrathin flexible transmission absorber with a total thickness of 0.288 mm is designed and fabricated, which can be conformally integrated on an object with a curved surface. The absorber consists of three layers of structure: the bottom is a one-dimensional grating type metal line, the middle is the medium layer, and the surface metal layer is composed of two different sizes metal lines in parallel. Simulation and experimental results show that the absorptions of TE wave are 97.5% and 96.0% respectively at the two frequency points of 5 GHz and 7 GHz. The transmission of the TM wave above 90% is maintained from 3 GHz to 6.5 GHz. We also simulate the spatial electric field distribution and magnetic field distribution at two resonant frequencies, and explain the electromagnetic absorption mechanism of the proposed structure for TE wave. Secondly, when the incident angle increases to 60 degrees, the performance of the absorber is substantially unaffected, exhibiting good wide-angle characteristics. In addition, through the analysis of structural parameters, two absorption peaks of the proposed absorber can be independently adjusted, resulting in a flexible design.In conclusion, we propose both theoretically and experimentally a polarization-controlled transmission-type dual-band metamaterial absorber that can absorb the TE waves and transmit the TM wave efficiently, which has important applications in the case requiring bidirectional communication.
引文
[1] Almoneef T S, Rarmahi O M 2015 Appl. Phys. Lett. 106153902
    [2] Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570
    [3] Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017Sci. Rep. 7 40490
    [4] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J2011 Phys. Rev. Lett. 107 045901
    [5] Li W, Valentine J 2014 Nano Lett. 14 3510
    [6] Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys.Sin.66 147802(in Chinese)[马晓亮,李雄,郭迎辉,赵泽宇,罗先刚2017物理学报66 147802]
    [7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Paxiilla W J2008 Phys. Rev. Lett. 100 201402
    [8] Khuyen B X. Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009
    [9] Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151
    [10] Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100103506
    [11] Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J.Alloys Compd. 705 262
    [12] Tao H, Bingham C M, Strikwerda A C, Pilon D,Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J,Averitt R D 2008 Phys. Rev. B 78 241103
    [13] Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D:Appl.Phys. 50 135108
    [14] Zhang Y P, Li T T, L(u|¨)H H, Huang X Y, Zhang H Y 2015Acta Phys.Sin. 64 117801(in Chinese)[张玉萍,李彤彤,吕欢欢,黄晓燕,张会云2015物理学报64 117801]
    [15] Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689
    [16] Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896
    [17] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett104 207403
    [18] Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P,Lee C 2017 ACS Photonics 4 302
    [19] Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010Appl. Phys. Lett 96 251104
    [20] Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M,Li Q 2017 Appl. Phys. Lett 110 101101
    [21] Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys.Lett. 95 241111
    [22] Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys.Rev. B 86 205104
    [23] Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373
    [24] Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052
    [25] Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945
    [26] Chen K, Adato R, Altug H 2012 ACS Nano 6 7998
    [27] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C,Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J.Phys. D:Appl. Phys. 43 225102
    [28] Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl.Phys. Lett. 99 264101
    [29] Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q2014 Opt. Express 22 A335
    [30] Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906
    [31] Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507
    [32] Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484
    [33] Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557
    [34] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010Nano Lett. 10 2342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700