石墨烯/Sr_2Ni_(0.4)Co_(1.6)O_6复合材料的制备及其性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Graphene/Sr_2Ni_(0.4)Co_(1.6)O_6 Composites
  • 作者:王成 ; 黄红霞 ; 肖阳 ; 梁大铭
  • 英文作者:WANG Cheng;HUANG Hong-xia;XIAO Yang;LIANG Da-ming;Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guilin University of Technology;
  • 关键词:石墨烯 ; 双钙钛矿氧化物 ; 电化学性能 ; 双功能催化剂 ; 功能材料
  • 英文关键词:graphene;;double perovskite oxide;;electrochemical properties;;bifunctional catalyst;;functional materials
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:桂林理工大学广西电磁化学功能物质重点实验室;
  • 出版日期:2019-03-13 16:57
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:广西自然科学基金(2016GXNSFAA380201);; 广西电磁化学功能物质重点实验室研究基金(EMFM20161103)
  • 语种:中文;
  • 页:JXHG201908009
  • 页数:6
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:56-61
摘要
通过溶胶-凝胶法合成了双钙钛矿型氧化物Sr_2Ni_(0.4)Co_(1.6)O_6、通过改性Hummers还原方法制备出薄层石墨烯,并制备单一物质和两者复合材料的双功能氧电极,用于测试其氧催化性能。采用XRD、EDS、SEM、FTIR对样品进行表征。结果显示:Sr_2Ni_(0.4)Co_(1.6)O_6均匀地分布于薄层石墨烯片层表面。电化学性能测试结果表明:单一Sr_2Ni_(0.4)Co_(1.6)O_6和薄层石墨烯的氧还原反应(ORR)最大电流密度分别为0.1830、0.1516A/cm~2 (–0.6Vvs.Hg/Hg O),氧析出反应(OER)最大电流密度分别为0.2677、0.1174 A/cm~2 (1 V vs. Hg/HgO)。当薄层石墨烯添加量占复合催化剂质量的10%时,复合催化剂的氧催化性能最佳,ORR最大电流密度为0.2901 A/cm~2(–0.6Vvs.Hg/Hg O),OER最大电流密度为0.3905 A/cm~2 (1 V vs. Hg/HgO),明显高于单一催化剂。
        A double perovskite oxide Sr_2Ni_(0.4)Co_(1.6)O_6 and thin layer graphene were prepared by sol-gel method and modified Hummers reduction method, respectively. Then, graphene/Sr_2Ni_(0.4)Co_(1.6)O_6 composites were synthesized as bifunctional oxygen electrode for testing its oxygen catalytic performance. The samples were characterized by XRD, EDS, SEM and FTIR. The results indicated that Sr_2Ni_(0.4)Co_(1.6)O_6 was homogeneously dispersed on the surface of the graphene layers. Electrochemical performance tests showed that for single Sr_2Ni_(0.4)Co_(1.6)O_6 and thin layer graphene, the corresponding maximum current density of oxygen reduction reaction(ORR) was 0.1830 A/cm~2 and 0.1516 A/cm~2(–0.6 V vs. Hg/HgO), and that of oxygen evolution reaction(OER) was 0.2677 A/cm~2 and 0.1174 A/cm~2(1 V vs. Hg/HgO). When the addition amount of thin layer graphene was 10% of the mass of the composite catalyst, the composite catalyst had the best oxygen catalytic performance, the maximum current density of ORR and OER was0.2901 A/cm~2(–0.6 V vs. Hg/HgO) and 0.3905 A/cm~2(1 V vs. Hg/HgO), respectively, higher than that of the single catalyst.
引文
[1]Wang Y,Chen K S,Mishler J,et al.A review of polymer electrolyte membrane fuel cells:Technology,applications,and needs on fundamental research[J].Applied Energy,2011,88(4):981-1007.
    [2]Armaroli N,Balzani V.The future of energy supply:Challenges and opportunities[J].Angewandte Chemie International Edition,2007,46(1/2):52-66.
    [3]Minowa H,Hayashi M,Hayashi K,et al.Mn-Fe-based oxide electrocatalysts for air electrodes of lithium-air batteries[J].Journal of Power Sources,2013,244:17-22.
    [4]Suntivich J,Gasteiger H A,Yabuuchi N,et al.Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J].Nature chemistry,2011,3(7):546-550.
    [5]Morimoto K,Nagashima I,Matsui M,et al.Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery[J].Journal of Power Sources,2018,388:45-51.
    [6]Wei Z,Cui Y,Huang K,et al.Fabrication of La2NiO4 nanoparticles as an efficient bifunctional cathode catalyst for rechargeable lithiumoxygen batteries[J].RSC Advances,2016,6(21):17430-17437.
    [7]Wang Ying(王瀛),Zhang Limin(张丽敏),Hu Tianjun(胡天军).Progress in oxygen reduction reaction electrocatalysts for metal-air batteries[J].Acta Chim Sinica(化学学报),2015,73(4):316-325.
    [8]Lu J,Cheng L,Lau K C,et al.Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries[J].Nature Communications,2014,5:4895.
    [9]Yamamoto K,Imaoka T,Chun W J,et al.Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions[J].Nature Chemistry,2009,1(5):397-402.
    [10]Zhuang Shuxin(庄树新),Lv Jianxian(吕建先),Lu Mi(路密),et al.Preparation and applications of perovskite-type oxides as electrode materials for solid oxide fuel cell and metal-air battery[J].Progress in Chemistry(化学进展),2015,27(4):436-447.
    [11]Sun N,Liu H,Yu Z,et al.The electrochemical performance of La0.6Sr0.4Co1-xNixO3 perovskite catalysts for LiO2 batteries[J].Ionics,2016,22(6):869-876.
    [12]Zhou Q,Cheng Y,Li W,et al.Investigation of cobalt-free perovskite Sr2FeTi0.75Mo0.25O6-δas new cathode for solid oxide fuel cells[J].Materials Research Bulletin,2016,74:129-133.
    [13]Li C,Wang W,Zhao N,et al.Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mg1-xMnxMoO6-δ[J].Applied Catalysis B:Environmental,2011,102(1/2):78-84.
    [14]Fu D,Jin F,He T.A-site calcium-doped Pr1-xCaxBa Co2O5+δdouble perovskites as cathodes for intermediate-temperature solid oxide fuel cells[J].Journal of Power Sources,2016,313:134-141.
    [15]Wang S,Jin F,Li L,et al.Stability,compatibility and performance improvement of SrCo0.8Fe0.1Nb0.1O3-δperovskite as a cathode for intermediate-temperature solid oxide fuel cells[J].International Journal of Hydrogen Energy,2017,42(7):4465-4477.
    [16]Tomkiewicz A C,Meloni M,McIntosh S.On the link between bulk structure and surface activity of double perovskite based SOFCcathodes[J].Solid State Ionics,2014,260:55-59.
    [17]Elumeeva K,Masa J,Sierau J,et al.Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes[J].Electrochimica Acta,2016,208:25-32.
    [18]Li D,Müller M B,Gilje S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3(2):101.
    [19]Zhao H,Chen C,Chen D,et al.Ba0.95La0.05FeO3-δ-multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction[J].Carbon,2015,90:122-129.
    [20]Wu Yanbo(吴艳波),Bi Jun(毕军),Wei Binbin(魏斌斌).Preparation and supercapacitor properties of double-perovskite La2CoNiO6 inorganic nanofibers[J].Acta Physico-Chimica Sinica(物理化学学报),2015,31(2):315-321.
    [21]Hu J,Wang L,Shi L,et al.Preparation of La1-xCaxMnO3 perovskitegraphene composites as oxygen reduction reaction electrocatalyst in alkaline medium[J].Journal of Power Sources,2014,269:144-151.
    [22]Holzwarth U,Gibson N.The Scherrer equation versus the'DebyeScherrer equation'[J].Nature Nanotechnology,2011,6(9):534.
    [23]Wang Jiande(汪建德),Peng Tongjiang(彭同江),Xian Haiyang(鲜海洋),et al.Preparation and supercapacitive performance of three-dimensional reduced graphene oxide/polyaniline composite[J].Acta Physico-Chimica Sinica(物理化学学报),2015,31(1):90-98.
    [24]Ito J,Nakamura J,Natori A.Semiconducting nature of the oxygen-adsorbed graphene sheet[J].Journal of Applied Physics,2008,103(11):113712.
    [25]Wu Z,Sun L P,Xia T,et al.Effect of Sr doping on the electrochemical properties of bi-functional oxygen electrode PrBa1-xSrxCo2O5+δ[J].Journal of Power Sources,2016,334:86-93.
    [26]Zhuang S,Huang C,Huang K,et al.Preparation of homogeneous nanoporous La0.6Ca0.4CoO3 for bi-functional catalysis in an alkaline electrolyte[J].Electrochemistry Communications,2011,13(4):321-324.
    [27]Molina-García M A,Rees N V.Dual-doped graphene/perovskite bifunctional catalysts and the oxygen reduction reaction[J].Electrochemistry Communications,2017,84:65-70.
    [28]Cheriti M,Kahoul A.Double perovskite oxides Sr2MMo O6(M=Fe and Co)as cathode materials for oxygen reduction in alkaline medium[J].Materials Research Bulletin,2012,47(1):135-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700