温室生产系统优化控制方法综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Survey of optimal control on greenhouse cultivation system
  • 作者:杜尚丰 ; 陈俐均 ; 徐丹 ; 何耀枫 ; 梁美惠
  • 英文作者:DU Shangfeng;CHEN Lijun;XU Dan;HE Yaofeng;LIANG Meihui;College of Information and Electrical Engineering, China Agricultural University;
  • 关键词:温室生产系统 ; 优化控制 ; 经济效益 ; 环境控制 ; 分层控制
  • 英文关键词:greenhouse production system;;optimal control;;economic benefit;;climate control;;hierarchical control
  • 中文刊名:HBGB
  • 英文刊名:Journal of Hebei University of Technology
  • 机构:中国农业大学信息与电气工程学院;
  • 出版日期:2017-10-15
  • 出版单位:河北工业大学学报
  • 年:2017
  • 期:v.46;No.199
  • 基金:国家自然科学基金(61134011,60374030)
  • 语种:中文;
  • 页:HBGB201705015
  • 页数:9
  • CN:05
  • ISSN:13-1208/T
  • 分类号:89-97
摘要
温室生产系统属于复杂系统,对其建模及控制没有形成系统的理论与方法.在简要回顾文献中各类温室生产调控系统控制算法的基础上,进一步简述近几十年来,国内外研究学者在温室环境控制系统领域中取得的成果、存在的问题、以及未来的发展动态.首先根据温室生产系统面临的问题,简述了该生产系统的特征、类型、控制指标以及对应的控制或优化方法;其次从机理出发详细叙述了按系统分类的系统控制与优化方法以及制约生产系统控制指标提升的瓶颈问题;最后给出了该类系统未来的研究与发展动态.
        As greenhouse cultivation is a complicated system, there is no systematic theory about its modelling and control methods. This paper will review various control algorithms applied in greenhouse cultivation, and make an abstract of the outcomes, problems and future improvements in recent decades. Firstly, to solve the problems in greenhouse production systems, an introduction is given about systems characteristics, types, control objectives and corresponding optimal control methods. Secondly, based on the classification of systems, a detailed description of optimal control strategies in terms of mechanism is given, and bottlenecks on improving control objectives of control techniques are summarized. Finally, future perspectives of this field are illustrated.
引文
[1]Blasco X,Martínez M,Herrero J M,et al.Model-based predictive control of greenhouse climate for reducing energy and water consumption[J].Computers&Electronics in Agriculture,2007,55(1):49-70.
    [2]Montoya A P,Guzmán J L,Rodríguez F,et al.A hybrid-controlled approach for maintaining nocturnal greenhouse temperature:simulation study[J].Computers&Electronics in Agriculture,2016,123:116-124.
    [3]耿澜.从“冬葵温韭”探温室技术起源[J].中国果菜,2015(1):14-15.
    [4]李莉,张彦娥,汪懋华,等.现代通信技术在温室中的应用[J].农业机械学报,2007,38(2):195-200.
    [5]武丽鸿,王海明,于琳琳.温室类型与装备技术研究[J].农业科技与装备,2014(10):61-64.
    [6]方虹.国内外日光温室技术装备的研究与应用分析[J].农业科技与装备,2014(5):40-41.
    [7]项美晶.基于信息融合的温室环境因子调控优化研究[D].镇江:江苏大学,2009.
    [8]秦琳琳.深液流栽培试验温室温度系统的建模与控制[D].合肥:中国科学技术大学,2008.
    [9]王定成,乔晓军,汪春秀,等.基于作物响应的温室环境SVMR控制仿真[J].农业工程学报,2010,26(s2):290-293.
    [10]Giraldo S A C,Flesch R C C,Normey-Rico J E.Multivariable greenhouse control using the filtered smith predictor[J].Journal of Control,Automation and Electrical Systems,2016,27(4):349-358.
    [11]Lammari K,Bounaama F,Draoui B,et al.GA optimization of the coupled climate model of an order two of a greenhouse[J].Energy Procedia,2012,18(18):416-425.
    [12]张军,张侃谕.温室温度控制系统不确定性与干扰的灰色预测补偿算法[J].农业工程学报,2013,29(10):225-233.
    [13]李永博,周伟,汪小旵,等.基于奇异摄动理论的综合温室控制系统设计[J].农业机械学报,2012,43(5):184-189.
    [14]Ramírez-Arias A,Rodríguez F,Guzmán J L,et al.Multiobjective hierarchical control architecture for greenhouse crop growth[J].Automatica,2012,48(3):490-498.
    [15]Ioslovich I,Gutman P O,Linker R.Hamilton-Jacobi-Bellman formalism for optimal climate control of greenhouse crop[J].Automatica,2009,45(5):1227-1231.
    [16]袁洪波,李莉,王俊衡,等.基于温度积分算法的温室环境控制方法[J].农业工程学报,2015,31(11):221-227.
    [17]Ferentinos K P,Katsoulas N,Tzounis A,et al.A climate control methodology based on wireless sensor networks in greenhouses[J].Acta Horticulturae,2015(1107):75-82.
    [18]徐立鸿,苏远平,梁毓明.面向控制的温室系统小气候环境模型要求与现状[J].农业工程学报,2013,29(19):1-15.
    [19]Guzmán-Cruz R,Castaeda-Miranda R,García-Escalante J J,et al.Calibration of a greenhouse climate model using evolutionary algorithms[J].Biosystems Engineering,2009,104(1):135-142.
    [20]Krner O,Heuvelink E,Niu Q.Quantification of temperature,CO2,and light effects on crop photosynthesis as a basis for model-based greenhouse climate control[J].Journal of Horticultural Science&Biotechnology,2015,84(2):233-239.
    [21]Mohamed S.A GA-based adaptive neuro-fuzzy controller for greenhouse climate control system[J].Alexandria Engineering Journal,2016.http://clx.doi.org/10.1016/j.acj.2014.04.009.
    [22]Azaza M,Echaieb K,Tadeo F,et al.Fuzzy decoupling control of greenhouse climate[J].Arabian Journal for Science and Engineering,2015,40(9):2805-2812.
    [23]Chantoiseau E,Migeon C,Chasseriaux G,et al.Heat-pump dehumidifier as an efficient device to prevent condensation in horticultural greenhouses[J].Biosystems Engineering,2016,142:27-41.
    [24]林东亮.温室环境控制混合系统建模与分析[D].上海:上海大学,2010.
    [25]沈敏,张荣标,盛碧琦.温室测控系统开关设备优化组合预测控制方法[J].农业机械学报,2011,42(2):186-189.
    [26]储著东,秦琳琳,陆林箭,等.实验温室温度系统混杂控制器设计与分析[J].中国科学技术大学学报,2015,45(4):268-274.
    [27]秦琳琳,马国旗,储著东,等.基于灰色预测模型的温室温湿度系统建模与控制[J].农业工程学报,2016,32(S1):233-241.
    [28]Ito K.Greenhouse temperature control with wooden pellet heater via model predictive control approach[C]//2012 20th Mediterranean Conference on Control&Automation(MED),2012:1542-1547.
    [29]Iliev O L,Sazdov P,Zakeri A.A fuzzy logic-based controller for integrated control of protected cultivation[J].Management of Environmental Quality an International Journal,2014,25(25):75-85.
    [30]Lafont F,Balmat J F.Optimized fuzzy control of a greenhouse[J].Fuzzy Sets&Systems,2002,128(1):47-59.
    [31]葛建坤,罗金耀,李小平,等.基于ANFIS的温室气温模糊控制仿真[J].农业工程学报,2010,26(8):216-221.
    [32]王纪章.基于模型的温室环境调控专家系统研究[D].镇江:江苏大学,2003.
    [33]Maher A,Kamel E,Enrico F,et al.An intelligent system for the climate control and energy savings in agricultural greenhouses[J].Energy Efficiency,2016,9(6):1241-1255.
    [34]王子洋,秦琳琳,吴刚,等.基于切换控制的温室温湿度控制系统建模与预测控制[J].农业工程学报,2008,24(7):188-192.
    [35]伍德林,毛罕平,李萍萍.基于经济最优目标的温室环境控制策略[J].农业机械学报,2007,38(2):115-119.
    [36]邓璐娟,张侃谕,龚幼民,等.温室环境多级控制系统及优化目标值设定的初步研究[J].农业工程学报,2005,21(5):119-122.
    [37]戴剑锋,罗卫红,乔晓军,等.基于模型的温室加温控制目标优化系统研究[J].农业工程学报,2006,22(11):187-191.
    [38]朱丙坤,徐立鸿,胡海根,等.基于节能偏好的冲突多目标相容温室环境控制[J].系统仿真学报,2011,23(1):95-99.
    [39]王丽艳.基于MATLAB的温室作物适宜环境参数优化与调控技术研究[D].沈阳:沈阳农业大学,2009.
    [40]Gruber J K,Guzmán J L,Rodríguez F C,et al.Nonlinear MPC based on a volterra series model for greenhouse temperature control using natural ventilation[J].Control Engineering Practice,2010,19(4):354-366.
    [41]Oliveira J B,Boaventura-Cunha J,Moura Oliveira P B.A feasibility study of sliding mode predictive control for greenhouses[J].Optimal Control Applications&Methods,2015,37(4):1-1.
    [42]Pión S,Camacho E F,Kuchen B,et al.Constrained predictive control of a greenhouse[J].Computers&Electronics in Agriculture,2005,49(3):317-329.
    [43]Van Beveren P J M,Bontsema J,Van Straten G,et al.Optimal control of greenhouse climate using minimal energy and grower defined bounds[J].Applied Energy,2015,159:509-519.
    [44]戴诗正.奇异摄动理论[J].系统工程与电子技术,1988,2:1-12.
    [45]Rodríguez F,Berenguel M,Arahal M R.A hierarchical control system for maximizing profit in greenhouse crop production[C]//European Control Conference ECC 2003,2003:2788-2793.
    [46]Rodríguez F,Guzmán J L,Berenguel M,et al.Adaptive hierarchical control of greenhouse crop production[J].International Journal of Adaptive Control&Signal Processing,2010,22(2):180-197.
    [47]Van Henten E J.Greenhouse climate management:an optimal control approach[D].Wageningen:Wageningen Agricultural University,1994.
    [48]Tap F.Economics-based optimal control of greenhouse tomato crop production[D].Wageningen:Wageningen Agricultural University,2000.
    [49]Van Henten E J,Bontsema J.Time-scale decomposition of an optimal control problem in greenhouse climate management[J].Control Engineering Practice,2009,17(1):88-96.
    [50]Van Straten G,Van Willigenburg L G,Tap R F.The significance of crop co-states for receding horizon optimal control of greenhouse climate[J].Control Engineering Practice,2002,10(6):625-632.
    [51]Kwon W H,Han S.Receding horizon control[J].Control Systems IEEE,2011,31(3):52-65.
    [52]Miao F,Lin S,Munir S,et al.Taxi dispatch with real-time sensing data in metropolitan areas:a receding horizon control approach[J].IEEE Transactions on Automation Science&Engineering,2016,13(2):463-478.
    [53]Seginer I.Co-state variables as strategic set-point generators for greenhouse environmental control[J].Ifac Proceedings Volumes,2013,46(18):225-230.
    [54]González R,Rodríguez F,Guzmán J L,et al.Robust constrained economic receding horizon control applied to the two time-scale dynamics problem of a greenhouse[J].Optimal Control Applications&Methods,2014,35(4):435-453.
    [55]Van Straten G,Van Willigenburg G,Van Henten E,et al.Optimal control of greenhouse cultivation[M].USA:CRC Press,2011.
    [56]Ioslovich I.Optimal control strategy for greenhouse lettuce:incorporating supplemental lighting[J].Biosystems Engineering,2009,103(1):57-67.
    [57]Slager B,Sapounas A A,Henten E J V,et al.Modelling and evaluation of productivity and economic feasibility of a combined production of tomato and algae in dutch greenhouses[J].Biosystems Engineering,2014,122(3):149-162.
    [58]Jones J W,Dayan E,Allen L H,et al.A dynamic tomato growth and yield model(TOMGRO)[J].Transactions of the ASAE,1991,34(2):663-672.
    [59]Koning A N M.Development and dry matter distribution in glasshouse tomato:a quantitative approach[D].Wageningen:Wageningen Agricultural University,1994.
    [60]程秀花,毛罕平,倪军.温室环境-作物湿热系统CFD模型构建与预测[J].农业机械学报,2011,42(2):173-179.
    [61]常毅博.温室黄瓜营养生长期蒸腾规律及其模型研究[D].杨凌:西北农林科技大学,2015.
    [62]张中典,张大龙,李建明,等.辐热积驱动的温室甜瓜作物系数模型[J].西北农林科技大学学报:自然科学版,2017,45(2):128-134.
    [63]李永秀,罗卫红,倪纪恒,等.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J].农业工程学报,2005,21(12):131-136.
    [64]李晓英,王文发,王诗瑶,等.基于辐热积模型的温室栽培生产规划决策支持系统[J].计算机与数字工程,2014,42(10):1908-1911.
    [65]魏占民,陈亚新,史海滨,等.BP神经网络的春小麦作物-水模型的初步研究[J].灌溉排水学报,2002,21(2):12-16.
    [66]王晓丽,邓璐娟.温室作物模糊蒸腾模型的设计与仿真[J].现代化农业,2004(10):30-32.
    [67]Vanthoor B H E,Stanghellini C,van Henten E J,et al.A methodology for model-based greenhouse design:part 1,a greenhouse climate model for a broad range of design and climates[J].Biosystems Engineering,2011,110(4):363-377.
    [68]马承伟,陆海,李睿,等.日光温室墙体传热的一维差分模型与数值模拟[J].农业工程学报,2010,26(6):231-237.
    [69]Krner O,Aaslyng J M,Andreassen A U.Microclimate prediction for dynamic greenhouse climate control[J].Hortscience,2007,42(2):272-279.
    [70]程文锋,杨祥龙,王立人.温室温湿度的反馈前馈线性化解耦控制[J].东南大学学报(自然科学版),2012,42(s1):5-10.
    [71]冯伟民,管安琴,沙国栋,等.改良型通风防虫大棚温湿度变化及其对番茄生长的影响[J].江苏农业学报,2012,28(6):1409-1412.
    [72]Gurban E H,Dragomir T L,Andreescu G D.Greenhouse climate control enhancement by using genetic algorithms[J].Control Engineering&Applied Informatics,2014,16(3):35-45.
    [73]Paraforos D,Griepentrog H W.Multivariable greenhouse climate control using dynamic decoupling controllers[J].IFAC Proceedings Volumes,2013,46(18):305-310.
    [74]王立舒,侯涛,姜淼.基于改进多目标进化算法的温室环境优化控制[J].农业工程学报,2014,30(5):131-137.
    [75]Matauek M R,Micic′A D.A modified smith predictor for controlling a process with an integrator and long dead-time[J].IEEE Transactions on Automatic Control,1996,41(8):1199-1203.
    [76]Krner O,Challa H.Design for an improved temperature integration concept in greenhouse cultivation[J].Computers&Electronics in Agriculture,2003,39(1):39-59.
    [77]Quillec S L,Brajeul E,Lesourd D,et al.Using temperature integration over 24 hours in soilless tomato cultivation in greenhouse:application in the west of france[J].Acta Horticulturae,2011(893):907-914.
    [78]杜尚丰,徐立鸿,马承伟,等.可控环境生产系统建模、仿真与控制研究进展[J].中国科学:信息科学,2010,40(增刊):54-70.
    [79]Del Sagrado J,Nchez J A,Rodr,et al.Bayesian networks for greenhouse temperature control[J].Journal of Applied Logic,2015,17(C):25-35.
    [80]Piscia D,Muoz P,Panadès C,et al.A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses[J].Computers&Electronics in Agriculture,2015,115:129-141.
    [81]Van Straten G,Van Henten E J,Optimal greenhouse cultivation control:survey and perspectives[J].IFAC Proceedings volumes,2010,43(26):18-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700