Ce/N共掺ZnO的电子结构和光学性质的理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical study on electronic structure and optical properties of Ce/N codoped ZnO
  • 作者:赵璨 ; 刘丹枫 ; 刘桂安 ; 雷博程 ; 夏桐 ; 黄以能 ; 张丽丽
  • 英文作者:ZHAO Can;LIU Dan-feng;LIU Gui-an;LEI Bo-cheng;XIA Tong;HUANG Yi-neng;ZHANG Li-li;Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics,College of Physical Science and Technology,Yili Normal University;School of Physics,National Lab of Solid State Microstructures,Nanjing University;
  • 关键词:ZnO ; 密度泛函理论 ; 电子结构 ; 形成能 ; 态密度 ; 光学性质
  • 英文关键词:ZnO;;density functional theory;;electron structure;;formation energy;;density of states;;optical property
  • 中文刊名:FZKB
  • 英文刊名:Journal of Molecular Science
  • 机构:伊犁师范大学物理科学与技术学院新疆凝聚态相变与微结构实验室;南京大学物理学院国家固体微结构重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:分子科学学报
  • 年:2019
  • 期:v.35;No.167
  • 基金:新疆维吾尔自治区十三五重点学科开放课题(XJZDXK-PHY-201806)
  • 语种:中文;
  • 页:FZKB201903008
  • 页数:7
  • CN:03
  • ISSN:22-1262/O4
  • 分类号:56-62
摘要
采用密度泛函理论计算了纯ZnO体系,N/Ce单掺ZnO体系和N与不同浓度Ce共掺体系的晶体结构、电子结构和光学性质.计算结果表明N和Ce共掺杂ZnO体系比单掺体系具有更低的杂质形成能,因而更加容易制备.Ce和N共掺使体系的禁带宽度变窄、吸收光谱发生红移、在可见光区域的吸收谱系数增大、静介电常数变大,这说明Ce,N杂质的掺入提升体系的光催化性能和对电荷的束缚能力,并且Zn_5O_7Ce_3N体系性能最优.
        Density functional theory is applied to calculate the crystal structure,electronic structure and optical properties of pure ZnO,N-doped ZnO,Ce-doped ZnO,and Ce/N codoped ZnO systems.The results show that Ce/N co-doped ZnO systems have lower impurity formation energy than single doped system,thus they are easier to prepare.The co-doping of Ce and N leads to narrowing of band gap,red shift of absorption spectrum,increasing absorption coefficient in visible region and the static dielectric constant.This indicates that the incorporation of Ce and N impurities can enhance the photocatalytic performance and ability to bind to electric charges of ZnO,and Zn_5O_7Ce_3N is the most excellent representative.
引文
[1]LOOK D C.[J].Mate Sci&Engi,2001,80:383-387.
    [2]OHTA H,KAWAMURA K,ORITA M,et al.[J].Appl Phys Lett,2000,77:475-477.
    [3]FAN X F,ZHU Z,ONG Y S,et al.[J].Appl Phys Lett,2007,91(12):3270.
    [4]XIE J,WANG H,DUAN M,et al.[J].Appl Surf Sci,2011,257(15):6358-6363.
    [5]YU P,TANG Z K,WONG G K L,et al.[J].J Cryst Growth,1998,184/185(2):601-604.
    [6]HAN D,REN X L,CHEN D,et al.[J].Phot Sci Phot,2005,23(6):414-420.
    [7]ZHOU Z,KOMORI T,AYUKAWA T,et al.[J].Appl Phys Lett,2005,87(9):091109.
    [8]LANG J,HAN Q,YANG J,et al.[J].J Appl Phys,2010,107(7):3270.
    [9]YUAN G D,ZHANG W J,JIE J S,et al.[J].Nano Lett,2008,8(8):2591.
    [10]赵慧芳,曹全喜,李建涛.[J].物理学报,2008,57(9):5828-5832.
    [11]陈琨,范广涵,章勇,等.[J].物理化学学报,2008,24(1):61-66.
    [12]万齐欣,熊志华,饶建平,等.[J].半导体学报,2007,28(5):696-700.
    [13]LIU X C,JI Y J,ZHAO J Q,et al.[J].J Phys,2010,59(7):4925-4929.
    [14]LI P,DENG S H,ZHANG X Y.[J].Commun Theor Phys,2010,54(10):723-727.
    [15]WU K,XU X G,YANG H L,et al.[J].Rare Metals,2012,31(4):27-30.
    [16]DUAN M Y,XU M,ZHOU H P,et al.[J].J Phys,2007,56(9):5359-5365.
    [17]YUAN D,HUANG D H,LUO H F,et al.[J].J Phys,2010,59(9):6457-6465.
    [18]ZHAO H F,CAO Q X,LI J T,et al.[J].J Phys,2008,57(9):5828-5832.
    [19]陈立晶,李维学,戴剑锋,等.[J].物理学报,2014(19):248-254.
    [20]HU X Y,TIAN H W,SONG L J,et al.[J].J Phys,2012,61(4):369-373.
    [21]李泓霖,张仲,吕英波,等.[J].金属学报,2013,29(4):506-512.
    [22]余长林,杨凯,余济美,等.[J].物理化学学报,2011,27(2):505-512.
    [23]ZHANG Y G,ZHANG G B,WANG Y X.[J].J Appl Phys,2011,109(6):252105.
    [24]张飞鹏,房慧,张忻,等.[J].分子科学学报,2015,31(3):233-238.
    [25]CUI X Y,MEDVEDEVA J E,DELLEY B,et al.[J].Phys Rev B,2016,75(15):155205.
    [26]AHMAD M,AHMED E,ZAFAR F,et al.[J].J Rare Earth,2015,33(3):255-262.
    [27]孙正昊,韦韧,刘玮洁,等.[J].长春工业大学学报,2011,32(5):461-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700