NaCl胁迫对黄花菜生长和生理特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth and Physiological Characteristics of Daylily Plants under NaCl Stress
  • 作者:韩志平 ; 张海霞 ; 刘冲 ; 张巽 ; 石福臣
  • 英文作者:HAN Zhiping;ZHANG Haixia;LIU Chong;ZHANG Xun;SHI Fuchen;School of Life Science,Protected Agricultural Technology Development Center,Shanxi Datong University;College of Life Science,Nankai University;Department of Rear-service,Shanxi Datong University;
  • 关键词:黄花菜 ; NaCl胁迫 ; 生长 ; 渗透调节 ; 抗氧化能力
  • 英文关键词:daylily;;NaCl stress;;growth;;osmotic regulation;;antioxidative ability
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:山西大同大学生命科学学院设施农业技术研发中心;南开大学生命科学学院;山西大同大学后勤管理处;
  • 出版日期:2018-09-15
  • 出版单位:西北植物学报
  • 年:2018
  • 期:v.38
  • 基金:山西省农业科技攻关(20150311010-1);; 大同市农业科技攻关(201468-2);; 山西省大学生创新创业训练(SDC2017102)
  • 语种:中文;
  • 页:DNYX201809017
  • 页数:7
  • CN:09
  • ISSN:61-1091/Q
  • 分类号:136-142
摘要
为探明黄花菜的耐盐性及其生理机制,该试验以大同黄花菜为材料,采用砂培法,以正常营养液为对照(CK),用不同浓度(50、100、150、200、250mmol·L~(-1))NaCl溶液浇灌大同黄花菜,分别于处理后5、10、15、20、25d测定生长指标和生理指标,以明确NaCl胁迫对大同黄花菜生长、膜脂过氧化以及有机渗透调节物质含量的影响。结果表明:(1)随NaCl浓度提高,黄花菜根长和根系鲜质量先增大后减小,其他生长指标则逐渐显著降低,同时地上部含水量变化较小,根系含水量明显增加。(2)黄花菜叶片叶绿素a、叶绿素b和类胡萝卜素含量随NaCl浓度提高均明显降低。(3)随NaCl浓度提高,黄花菜叶片丙二醛含量和POD活性逐渐显著增加;抗坏血酸含量在胁迫后20d明显增加,25d时呈先增加后降低的变化趋势,并在150mmol·L~(-1) NaCl胁迫下达到最大值;SOD活性在处理后10d先增加后降低,在200mmol·L~(-1) NaCl处理下达到最大值,15d后随NaCl浓度提高而显著增加。(4)随NaCl浓度提高,叶片脯氨酸含量逐渐显著增加,可溶性糖含量明显降低,可溶性蛋白含量在短期内逐渐增加,在胁迫15d后呈先增加后降低的变化趋势,在150mmol·L~(-1) NaCl下达到最大值。研究发现,NaCl胁迫对黄花菜叶片光合色素合成的抑制和过氧化伤害程度均随浓度增加而增大;植株自身抗氧化能力和渗透调节能力在盐胁迫下明显提高,一定程度上缓解了盐胁迫对其植株的伤害,但仍不足以消除胁迫带来的不利影响,使得黄花菜植株生长受到显著抑制;黄花菜对NaCl胁迫的耐性较强,植株在250mmol·L~(-1)高盐胁迫下仍能存活。
        To explore the salt-tolerance and its physiological mechanism of daylily,with the normal nutrient solution as control,the experiment studied the effects of NaCl stress on the growth,lipid peroxidation and organic osmotic substances contents of Datong daylily in sand culture by irrigating the different concentrations(50,100,150,200,250 mmol·L~(-1))of NaCl solution and measuring the growth and physiological indicators at 5,10,15,20,25 dafter treatment.The results showed that:(1)with the increase of NaCl concentration,the root length and root fresh weight were increased and then decreased,the other growth indexes were decreased significantly,and the aboveground water content was relatively stable,and root water content was increased obviously.(2)The contents of chlorophyll a,chlorophyll b and carotenoid in leaves of daylily were decreased obviously with the increase of NaCl concentration.(3)With therise of NaCl concentration,the MDA content and POD activity were increased drastically,the AsA content was increased within 20 dafter treatment,and showed the trend of"increase-decrease"and reached the maximum at 150 mmol·L~(-1) at the 25 th day.The SOD activity showed the law of"increase-decrease"and reached the peak value at 200 mmol·L~(-1) within 10 dafter treatment,and was increased significantly with the rise of NaCl concentration after 15 d.(4)With the increase of NaCl concentration,the proline content was increased drastically,the soluble sugar content was decreased obviously,the soluble protein content was increased with the rise of NaCl concentration in short period,and showed the trend of"increase-decrease"and reached the maximum at 150 mmol·L~(-1) NaCl after 15 d.The research illustrated that the greater the NaCl concentration,the greater the inhibition degree to the photosynthetic pigment synthesis and the peroxidation damage to the daylily plant.The abilities of antioxidance and osmotic adjustment of plant under stress were increased obviously,but the change could not eliminate the adverse effect by NaCl stress.It made that the growth of daylily plant was reduced significantly.The salt-tolerance of daylily was very strong,the plant can survive under 250 mmol·L~(-1) NaCl stress.
引文
[1]张振贤,喻景权,于贤昌,等.蔬菜栽培学[M].北京:中国农业大学出版社,2008:487-491.
    [2]段金省,李宗?,周忠文.保护地栽培对黄花菜生长发育的影响[J].中国农业气象,2008,29(2):184-187.DUAN J S,LI Z Y,ZHOU Z W.Influence of protected cultivation on growth and development of citron daylily(Hemerocallis citrina)[J].Chinese Journal of Agrometeorology,2008,29(2):184-187.
    [3]赵晓玲.庆阳黄花菜优势产区区划及配套栽培技术研究[D].陕西杨陵:西北农林科技大学,2005.
    [4]韩志平,张春业,马樱芳,等.黄花菜采后生理与贮藏保鲜技术研究进展[J].山西农业科学,2013,41(1):103-106.HAN Z P,ZHANG C Y,et al.Study advance on the postharvest physiology,storage and fresh-keeping techniques of daylily[J].Journal of Shanxi Agricultural Sciences,2013,41(1):103-106.
    [5]高洁.大同县黄花菜地理标志产品保护调研报告[D].太原:山西大学,2013.
    [6]李黎霞.大同市玉米与黄花菜种植现状及发展前景分析[J].山西农业科学,2010,38(9):9-10,16.LI L X.Analysis of corn and daylily production status and development in Datong City[J].Journal of Shanxi Agricultural Sciences,2010,38(9):9-10,16.
    [7]张克强,白成云,马宏斌,等.大同盆地金沙滩盐碱地综合治理技术开发研究[J].农业工程学报,2005,21(增):136-141.ZHANG K Q,BAI C Y,MA H B,et al.Combined methods for comprehensive improvement of saline-alkali soil in Datong basin[J].Transactions of the CSAE,2005,21(supp.):136-141.
    [8]贾洪纪,姚余君,李俊涛,等.寒地黄花菜引种效果分析[J].东北林业大学学报,2007,35(10):13-16.JIA H J,YAO Y J,LI J T,et al.Effect of introduced daylily flower in cold area[J].Journal of Northeast Forestry University,2007,35(10):13-16.
    [9]LI X B,KANG Y H,et al.Response of daylily(Hemerocallis hybridus cv.‘Stella de oro')to saline water irrigation in two coastal saline soils[J].Scientia Horticulturae,2016,205:39-44.
    [10]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯.1988,(3):62-64.SHEN W Q.Etraction of mixed solutiou for detemrinaiton of chlorophyll content in rice leaf blade[J].Plant Physiology Communications,1988,(3):62-64.
    [11]MADHAVA R K V,SRESTY T V S.Antioxidative parameters in the seedlings of pigeonpea(Cajanus cajan L.Millspaugh)in response to Zn and Ni stresses[J].Plant Science,2000,157:113-128.
    [12]赵会杰.抗坏血酸含量及抗坏血酸过氧化物酶活性的测定[M]//中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.北京:科学出版社,1999:315-316.
    [13]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006:211-213,217-218.
    [14]李小方,张志良.植物生理学实验指导(第5版)[M].北京:高等教育出版社,2016:91-92,192-193.
    [15]蔡庆生.植物生理学实验[M].北京:中国农业大学出版社,2013:41-42.
    [16]邱收.几个萱草属植物的耐盐性研究[D].长沙:湖南农业大学,2008.
    [17]陈晓亚,汤章城.植物生理与分子生物学(第3版)[M].北京:高等教育出版社,2007:533-551.
    [18]DUAN J J,LI J,GUO S R,et al.Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J].Journal of Plant Physiology,2008,165:1 620-1 635.
    [19]李青云,葛会波,胡淑明.外源腐胺和钙对对NaCl胁迫下草莓幼苗离子吸收的影响[J].植物营养与肥料学报,2008,14(3):540-545.LI Q Y,GE H B,HU S M.Effect of eoxogenous put rescine and calcium on ion uptake of st rawberry seedling under NaCl stress[M].Plant Nutrition and Fertilizer Science,2008,14(3):540-545.
    [20]NXELE X,KLEIN A,NDIMBA B K.Drought and salinity stress alters ROS accumulation,water retention,and osmolyte content in sorghum plants[J].South African Journal of Botany,2017,108:261-266.
    [21]束胜,郭世荣,孙锦,等.盐胁迫下植物光合作用的研究进展[J].中国蔬菜,2012,(18):53-61.SHU S,GUO S R,SUN J,et al.Research progress on photosynthesis under salt stress[J].China Vegetables,2012,(18):53-61.
    [22]韩志平,郭世荣,焦彦生,等.NaCl胁迫对西瓜幼苗生长和光合气体交换参数的影响[J].西北植物学报,2008,28(4):745-751.HAN Z P,GUO S R,JIAO Y S,et al.Effect of NaCl stress on growth and photosynthetic gas exchange of watermelon seedlings[J].Acta Bot.Boreal.-Occident.Sin.,2008,28(4):745-751.
    [23]KIREMIT M S,ARSLAN H.Effects of irrigation water salinity on drainage water salinity,evapotranspiration and other leek(Allium porrum L.)plant parameters[J].Scientia Hoticulturae,2016,201:211-217.
    [24]PARIDA A K,DAS A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60:324-349.
    [25]PARVAIZ A,SATYAWATI S.Salt stress and phyto-biochemical response of plants-a review[J].Plant Soil Environnment,2008,54(3):89-99.
    [26]窦俊辉,喻树迅,范术丽,等.SOD与植物胁迫抗性[J].分子植物育种,2010,8(2):359-364.DOU J H,YU S X,FAN S L,et al.SOD and plant stress resistance[J].Molecular Plant Breeding,2010,8(2):359-364.
    [27]CAVALCANTI F R,LIMA J P M S,et al.Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea[J].Journal of Plant Physiology,2007,164:591-600.
    [28]ABDEL-HALIEM M E F,HEGAZY H S,HASSAN N S,et al.Effect of silica ions and nano silica on rice plants under salinity stress[J].Ecological Engineering,2017,99:282-289.
    [29]KAUSHAL M,WANI S.Rhizobacterial-plant interactions strategies ensuring plant growth promotion under drought and salinity stress[J].Agriculture,Ecosystems and Environment,2016,231:68-78.
    [30]YILDIRIM E,KARLIDAG H,TURAN M.Mitigation of salt stress in strawberry by foliar K,Ca and Mg nutrient supply[J].Plant Soil Environment,2009,55(5):213-221.
    [31]童辉,孙锦,郭世荣,等.等渗Ca(NO3)2和NaCl对黄瓜幼苗生长及渗透调节物质含量的影响[J].西北植物学报,2012,32(2):306-311.TONG H,SUN J,GUO S R,et al.Effects of iso-osmotic Ca(NO3)2and NaCl stress on the growth and osmotic substances of cucumber seedlings[J].Acta Bot.Boreal.-Occident.Sin.,2012,32(2):306-311.
    [32]刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,14(1):18-19,22.LIU H,SHU X X,ZHAO Y,et al.Effect of salt stress on growth and carbohydrate contents in Puccinellia tenuiflora[J].Pratacultural Science,1997,14(1):18-19,22.
    [33]ATZORI G,DE VOS A C,et al.Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L.under field conditions[J].Agricultural Water Management,2017,187:37-46.
    [34]周研.盐胁追对大豆种子萌发、离子平衡及可溶性糖含量影响的研究[D].哈尔滨:东北师范大学,2014.
    [35]赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报,2000,6(2):99-105.ZHAO K F,FAN H.Comparative study on osmotica and their cotributions to osmotic adjustment in eu-halophytes and recretohalophytes[J].Chinese Journal of Appllied and Environmental Biology,2000,6(2):99-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700