3种挺水植物对污水的净化效果及生理响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological Response of Emergent Hydrophytes to Wastewater Stress and Their Potential for Reducing COD and Nutrients
  • 作者:孙瑞莲 ; 刘健
  • 英文作者:SUN Ruilian;LIU Jian;Environment Research Institute,Shandong University;
  • 关键词:宽叶香蒲 ; 茭白 ; 黄花鸢尾 ; 抗性生理 ; 净化效果
  • 英文关键词:Typha latifolia L;;Zizania latifolia Turcz.;;Iris pseudacorus L;;resistance physiology;;purification effect
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:山东大学环境研究院;
  • 出版日期:2018-05-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家水体污染控制与治理科技重大专项(2012ZX07203-004)
  • 语种:中文;
  • 页:TRYJ201805018
  • 页数:7
  • CN:05
  • ISSN:44-1661/X
  • 分类号:138-144
摘要
为了探明宽叶香蒲(Typha latifolia L.)、茭白(Zizania latifolia Turcz.)及黄花鸢尾(Iris pseudacorus L.)在人工湿地污水处理系统中的抗逆性和适应性,采用人工模拟方法,设置4个处理,分别为:T_0(15 mg·L~(-1) COD,0.2 mg·L~(-1) TN,0.02mg·L~(-1) TP)、T_1(80 mg·L~(-1) COD,15 mg·L~(-1) TN,2 mg·L~(-1) TP)、T_2(160 mg·L~(-1) COD,30 mg·L~(-1) TN,4 mg·L~(-1) TP)和T_3(320 mg·L~(-1) COD,60 mg·L~(-1) TN,8 mg·L~(-1) TP),研究这3种植物对不同浓度污水的净化能力及其抗性生理特征。结果表明,宽叶香蒲、茭白及黄花鸢尾对T_1、T_2、T_3污水中的COD、TN和TP均有较高的净化率。同一浓度污水处理下,各植物对COD的去除效果均无显著差异,黄花鸢尾对TP的去除效果最好,茭白对TN的去除效果表现最佳。T_1污水处理没有增加3种植物的丙二醛(MDA)含量,随着污水浓度的升高,T_2、T_3污水处理下3种植物MDA含量明显上升,表明污水浓度的增加引起3种植物体内膜脂过氧化加剧。此外,污水胁迫也导致了3种植物体内的抗氧化酶活性和脯氨酸含量的变化。茭白的超氧化物歧化酶(SOD)和宽叶香蒲的过氧化物酶(POD)可能在其自由基的清除中发挥重要作用,SOD和过氧化氢酶(CAT)的协同作用代表了宽叶香蒲和黄花鸢尾抵抗污水胁迫的一种防御策略,黄花鸢尾体内脯氨酸的积累可能在其抵抗污水胁迫中扮演着重要角色。综上,宽叶香蒲、茭白和黄花鸢尾对不同污染负荷水体均有较高的净化效果,通过调节抗氧化酶系统和脯氨酸的合成来减少逆境胁迫引起的氧化伤害,高污染负荷水体对3种植物有胁迫作用。
        In order to study the ability of hydrophytes in purifying polluted water and plant responses to oxidative stress induced by chemical oxygen demand(COD), nitrogen and phosphorus, three macrophytes species(Zizania latifolia Turcz., Iris pseudacorus L. and Typha latifolia L.) were treated with various concentrations of COD/TN/TP(T_0: 15/0.2/0.02 mg·L~(-1), T_1: 80/15/2 mg·L~(-1), T_2: 160/30/4 mg·L~(-1) and T_3: 320/60/8 mg·L~(-1)). The results showed that vegetated microcosms were more effective at reducing concentrations of COD, total nitrogen(TN) and total phosphorus(TP) than unvegetated. There is a differential species effect on the potential to reduce TN and TP. Z. latifolia was most effective in terms of TN removal, while I. pseudacorus showed the highest TP removal efficiency. However, there was no significant difference between vegetated microcosms for COD removal efficiencies. The MDA levels of I. pseudacorus and T. latifolia were not increased exposed to sewage, which was associated with significantly higher SOD and CAT activities in plants treated with T_1. POD in T. latifolia, SOD in Z. latifolia and free proline in I. pseudacorus might play important roles against oxidative stress. However, treatment with high COD/N/P(T_2, T_3) significantly increase the MDA levels of three hydrophytes. It can be concluded that the antioxidative defense system and free proline accumulation were activated but could not resist the oxidative stress in plants exposed to high concentrations of COD/N/P(≥160/30/4 mg·L~(-1)).
引文
ANSOLA G,FERNANDEZ C,DE LUIS E.1995.Removal of organic matter and nutrients from urban wastewater by using an experimental emergent aquatic macrophyte system[J].Ecological Engineering,5(1):13-19.
    BRADFORD M M.1976.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,72:248-254.
    CHAPIN F S,SCHULZE E D,MOONEY H A.1990.The ecology and economics of storage in plants[J].Annual Review of Ecology and Systematics,21(1):423-447.
    DORNELAS M,MOONEN A C,MAGURRAN A E,et al.2009.Species abundance distributions reveal environmental heterogeneity in modified landscapes[J].Journal of Applied Ecology,46(3):666-672.
    DRIZO A,FROST C A,GRACE J,et al.1999.Physical-chemical screening of phosphate removing substrates for using in constructed wetland systems[J].Water Research,33(17):3596-3602.
    GERSBERG R M,ELDKINS B V,LYON S R,et al.1988.Role of aquatic plant in wastewater treatment by artificial wetland[J].Water Research,20(3):363-368.
    GIANNOPOLITIS C N,RIES S K.1977.Superoxide dismutases I.Occurrence in higher plants[J].Plant Physiology,59:309-3l4.
    HADAD H R,MAINE M A,BONETTO C A.2006.Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J].Chemosphere,63(10):1744-1753.
    JING S R,LIN Y F,LEE D Y,et al.2001.Nutrient removal from polluted river water by using constructed wetlands[J].Bioresource Technology,76(2):131-135.
    LEE M Y,SHIN H W.2003.Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata[J].Journal of Applied Phycology,15(1):13-19.
    LI E H,LI W,WANG X L,et al.2010.Experiment of emergent macrophytes growing in contaminated sludge:Implication for sediment purification and lake restoration[J].Ecological Engineering,36(4):427-434.
    MCJANNET C L,KEDDY P A,PICK F R.1995.Nitrogen and phosphorus tissue concentrations in 41 wetland plants:a comparison across habitats sand functional groups[J].Function Ecology,9(2):23-28.
    NIMPTSCH J,PFLUGMACHER S.2007.Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J].Chemosphere,66(4):708-714.
    RAO M V,PALIYATH G,ORMROD D P,et al.1997.Influence of salicylic acid on H2O2 production,oxidative stress,and H2O2-metabolizing enzymes[J].Plant Physiology,115(1):137-149.
    VITORIA A P,LEA P J,AZEVEDO R A.2001.Antioxidant enzymes responses to cadmium in radish tissues[J].Phytochemistry,57(5):701-710.
    VYMAZAL J.2007.Removal of nutrients in various types of constructed wetlands[J].Science of the Total Environment,380(123):48-65.
    WANG C,ZHANG S H,WANG P F,et al.2008a.Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans(Lour.)Hara[J].Aquatic Toxicology,87(2):88-98.
    WANG Y,INAMORI R,KONG H,et al.2008b.Nitrous oxide emission from polyculture constructed wetlands:effect of plant species[J].Environmental Pollution,152(2):351-360.
    WU H M,ZHANG J,LI P Z,et al.2011.Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China[J].Ecological Engineering,37(4):560-568.
    ZHANG X B,LIU P,YANG Y S,et al.2007.Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes[J].Journal of Environmental Science,19(8):902-909.
    付融冰,杨海真,顾国维,等.2006.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,32(1):18-22.
    高春芳,刘超翔,王振,等.2011.人工湿地组合生态工艺对规模化猪场养殖废水的净化效果研究[J].生态环境学报,20(1):154-159.
    高敏,刘鑫,邓建才,等.2015.不同水质对沉水植物马来眼子菜主要生理指标的影响研究[J].生态环境学报,24(11):1886-1892.
    蒋传葵,金承德,吴仁龙,等.1982.工具酶的活力测定[M].上海:科学技术出版社.
    蒋跃平,葛滢,岳春雷,等.2004.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,24(8):1720-1725.
    李合生.2000.植物生理生化实验原理和技术[M].北京:高等教育出版社.
    李涛,周律.2009.湿地植物对污水中氮、磷去除效果的试验研究[J].环境工程,27(4):25-28.
    凌祯,杨具瑞,于国荣,等.2012.污水浓度对高原湖泊人工湿地处理率的影响研究[J].水力发电学报,31(5):133-140.
    刘超,宁国辉,律琳琳,等.2012.芦苇湿地系统对鸭粪废水中COD的模拟去除及纳污量核算[J].环境科学学报,32(9):2119-2125.
    马佳,覃晓艳,周希.2013.四种水生植物在污水胁迫下的生理生化特性研究[J].绿色科技,42(5):52-55.
    宋雨晴,靳翠丽,胡文峰,等.2017.氮源对盐藻生长及细胞物质组成的影响[J].生态环境学报,26(2):268-274.
    孙瑞莲,张建,王文兴.2009.8种挺水植物对污染水体的净化效果比较[J].山东大学学报(理学版),44(1):12-16.
    汤显强,李金中,李学菊,等.2007.7种水生植物对富营养化水体中氮磷去除效果的比较研究[J].亚热带资源与环境学报,2(2):8-14.
    王琴,张海涛,ARCANGELI JP,等.2012.高盐工业废水人工湿地处理中植物的筛选[J].环境工程学报,6(1):226-231.
    袁东海,任全进,高士祥.2004.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,15(12):2337-2341.
    袁杰,董立新,杨洁,等.2017.六种挺水植物对富营养化河水氮磷净化效果研究[J].环境科学与管理,42(4):75-79.
    张志良,瞿伟菁.2003.植物生理学实验指导[M].北京:高等教育出版社.
    赵永军,田云飞,黄德英,等.2016.四种不同植物湿地对不同C/N比生活污水的净化效果与季节动态[J].环境科学学报,36(1):193-200.
    中国国家环境保护总局.2002.水和废水监测分析[M].北京:中国环境科学出版社.
    周玥,韩玉国,张梦.2016.4种不同生活型湿地植物对富营养化水体的净化效果[J].应用生态学报,27(10):3353-3360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700