铁锰改性铜绿微囊藻对锑的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of iron-manganese oxide composite modified Microcystis aeroginosa adsorbent for advanced antimony removal
  • 作者:赵济金 ; 戚菁 ; 吉庆华 ; 兰华春 ; 刘会娟 ; 曲久辉
  • 英文作者:ZHAO Jijin;QI Jing;JI Qinghua;LAN Huachun;LIU Huijuan;QU Jiuhui;College of Environmental Science and Engineering, Guilin University of Technology;State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academyof Sciences;Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University;
  • 关键词:吸附剂 ; 微囊藻 ; ; 铁锰氧化物 ; 吸附动力学模型
  • 英文关键词:adsorbent;;Microsystis aeroginosa;;antimony;;iron-manganese oxides;;adsorption kinetic model
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:桂林理工大学环境科学与工程学院;中国科学院生态环境研究中心环境水质学国家重点实验室;清华大学环境学院环境模拟与污染控制国家重点联合实验室水质与水生态研究中心;
  • 出版日期:2019-06-12 09:31
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07207004-5);; 国家自然科学基金资助项目(51808531)
  • 语种:中文;
  • 页:HJJZ201907011
  • 页数:11
  • CN:07
  • ISSN:11-5591/X
  • 分类号:67-77
摘要
利用生物质吸附去除水中重金属离子具有制备简单、成本低廉、环境影响小等优点,通过高锰酸钾-硫酸亚铁处理过程对铜绿微囊藻改性,制备了能够高效吸附水中锑(Sb)的铁锰改性藻粉复合材料。扫描电镜和X射线光电子能谱分析表明,改性藻粉中存在大量铁锰氧化物颗粒,铁锰的主要存在形式为Fe_2O_3和MnO_2。改性后的复合藻粉对Sb(Ⅲ)的吸附量从3.06 mg·g~(-1)增加到35.30 mg·g~(-1),对Sb(Ⅴ)的吸附量从3.07 mg·g~(-1)增加到4.37 mg·g~(-1),并且改性后的复合藻粉到达吸附平衡的时间更短。Langmuir模型可以很好地描述Sb在复合藻粉上的吸附行为,Elovich模型对藻粉吸附Sb(Ⅲ)和Sb(Ⅴ)的吸附过程拟合较好(R~2=0.957,0.943),而复合藻粉更适用准二级动力学模型(R2=0.953,0.961)。Sb(Ⅲ)主要通过氧化和吸附作用被去除,而Sb(Ⅴ)在复合藻粉表面形成表面络合物后被吸附。共存阴离子(SO_4~(2-)、CO_3~(2-)、PO_4~(3-))的存在对复合藻粉吸附Sb(Ⅲ)几乎没有影响,但是共存阴离子浓度越高,对Sb(Ⅴ)的吸附抑制越明显。
        Bioadsorption as a kind of heavy metal biological treatment technology has many advantages,such as low cost,low environmental pollution,and easy process of treatment.Microcystis aeroginosa was modified during its treatment with potassium permanganate and ferrous sulfate,and the iron-manganese modified algae powder composite materials were prepared for antimony removal from water.Scanning electron micrsocopy(SEM)and X-ray photoelectron spectroscopy(XPS)analysis suggests that the modified algae powder contained a large portion of iron(Fe_2O_3)and manganese(MnO_2)oxides particles.In a comparison between normal algae powder and the composite modified algae powder material,the adsorption capacities towards Sb(Ⅲ)and Sb(Ⅴ)increased from3.06 mg·g~(-1)to 35.30 mg·g~(-1)and from 3.07 mg·g~(-1)to 4.37 mg·g~(-1),respectively,and the adsorption equilibrium time decreased.The antimony adsorption behavior on the modified composite algae could be well described with Langmuir model.The adsorption kinetics of Sb(Ⅲ)and Sb(Ⅴ)onto unmodified algae powder could be well fitted with the Elovich model(R~2=0.957,0.943),while the adsorption kinetics onto modified algae powder could be well fitted with the Pseudo-second order kinetic model(R~2=0.953,0961).Sb(Ⅲ)removal was primarily ascribed to oxidation and adsorption,and Sb(Ⅴ)adsorption was assigned as the formation of surface complexes with the modified algae powder.The presence of coexisting anions(SO_4~(2-),CO_3~(2-),PO_4~(3-))had slight effect on the adsorption of Sb(Ⅲ)by algae powder,while the higher concentrations of anions were,the more remarkable the inhibition of Sb(Ⅴ)adsorption was.
引文
[1]HE M C,WANG X Q,WU F C,et al.Antimony pollution in China[J].Science of the Total Environment,2012,421:41-50.
    [2]PAUL W,PANJAI P,EVERETT S,et al.Antimony leaching from polyethylene terephthalate(PET)plastic used for bottled drinking water[J].Water Research,2007,42(3):551-556.
    [3]MICHAEL K,MARKUS L,KARL H S,et al.External and internal antimony exposure in starter battery production[J].International Archives of Occupational and Environmental Health,1995,67(2):119-123.
    [4]KANG M,KAMEI T,MAGARA Y.Comparing polyaluminum chloride and ferric chloride for antimony removal[J].Water Research,2003,37(17):4171-4179.
    [5]LEYVA A G,MARRERO J,SMICHOWSKI P,et al.Sorption of antimony onto hydroxyapatite[J].Environmental Science&Technology,2001,35(18):3669-3675.
    [6]FAN J X,WANG Y J,CUI X D,et al.Sorption isotherms and kinetics of Sb(V)on several Chinese soils with different physicochemical properties[J].Journal of Soils and Sediments,2013,13(2):344-353.
    [7]LENG Y Q,GUO W L,SU S G,et al.Removal of antimony(III)from aqueous solution by graphene as an adsorbent[J].Chemical Engineering Journal,2012,211:406-411.
    [8]PAWLAK Z,CARTWRIGHT P S,OLOYEDE A,et al.Removal of toxic arsenic and antimony from groundwater spiro tunnel bulkhead in park city utah using colloidal iron hydroxide:Comparison with reverse osmosis[J].Advances in Materials and Processing Technologies,2010,83-86:553-562.
    [9]GUO X J,WU Z J,HE M C.Removal of antimony(V)and antimony(III)from drinking water by coagulation-flocculation-sedimentation(CFS)[J].Water Research,2009,43(17):4327-4335.
    [10]WU Z J,HE M C,GUO X J,et al.Removal of antimony(III)and antimony(V)from drinking water by ferric chloride coagulation:Competing ion effect and the mechanism analysis[J].Separation and Purification Technology,2010,76(2):184-190.
    [11]邱罡,吴双桃,陈少瑾.水浮莲干体吸附去除水中的锑(Ⅲ)[J].环境工程学报,2012,6(8):2683-2688.
    [12]WU F C,SUN F H,WU S,et al.Removal of antimony(III)from aqueous solution by freshwater cyanobacteria Microcystis biomass[J].Chemical Engineering Journal,2012,183:172-179.
    [13]DHARANI M,BALASUBRAMANIAN S S.Characterization and application of acryloyl chitosan anchored copolymer towards algae flocculation[J].Carbohydrate Polymers,2016,152:459-467.
    [14]QI J,LAN H C,LIU H J,et al.Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in KMnO4-Fe(II)process[J].Water Research,2016,105:551-558.
    [15]徐伟,刘锐平,曲久辉,等.铁锰复合氧化物吸附去除五价锑性能研究[J].环境科学学报,2012,32(2):270-275.
    [16]MIN C,SCOTT P,WANG H K,et al.Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode[J].Journal of Materials Chemistry A,2015,45(3):22614-22626.
    [17]DEREJE H T,INES H,CHRISTIAN D,et al.Electrochemical deposition of Fe2O3in the presence of organic additives:Aroute to enhanced photoactivity[J].RSC Advances,2015,125(5):103512-103522.
    [18]LI R J,LIU L F,ZHANG Y H,et al.Preparation of a nano-MnO2surface-modified reduced graphene oxide/PVDF flat sheet membrane for adsorptive removal of aqueous Ni(II)[J].RSC Advances,2016,25(6):20542-20550.
    [19]GERENTE C,LEE V K C,CLOIREC P L,et al.Application of chitosan for the removal of metals from wastewaters by adsorption:Mechanisms and models review[J].Critical Reviews in Environmental Science and Technology,2007,37(1):41-127.
    [20]HO Y S.Review of second-order models for adsorption systems[J].Journal of Hazardous Materials,2006,136(3):681-689.
    [21]KANEL S R,GRENECHE J M,CHOI H.Arsenic(V)removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J].Environmental Science&Technology,2006,40(6):2045-2050.
    [22]QI Z L,JOSHI I P,LIU R P,et al.Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony[J].Journal of Hazardous Materials,2018,343:36-48.
    [23]李双双,戴友芝,于磊,等.铁改性海泡石除锑的影响因素研究[J].环境工程学报,2009,3(3):485-488.
    [24]LANGMUIR I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical Society,1918,40:1361-1403.
    [25]FREUNDLICH H.Concerning adsorption in solutions[J].Zeitschrift for Physikalische Chemie,1906,57(4):385-470.
    [26]DONG C L,CHEN W,LIU C,et al.Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,446:179-189.
    [27]AMLAN G,SAEZ A E,ELA W.Effect of pH,competitive anions and NOM on the leaching of arsenic from solid residuals[J].Science of the Total Environment,2006,363(1/2/3):46-59.
    [28]FILELLA M,BELZILE N,CHEN Y W.Antimony in the environment:A review focused on natural waters I.Occurrence[J].Earth-Science Reviews,2002,57(1/2):125-176.
    [29]HAYES K F,PAPELIS C,LECKIE J O.Modeling ionic-strength effects on anion adsorption at hydrous oxide solution interfaces[J].Journal of Colloid and Interface Science,1988,125(2):717-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700