基于音频大地测深法研究乌拉嘎断裂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Wulaga fault by Audio Magnetotelluric(AMT)
  • 作者:高天 ; 何国丽 ; 周安昌 ; 王光杰 ; 郭洋 ; 陈彩云 ; 李永兵 ; 石耀霖
  • 英文作者:GAO Tian;HE Guo-li;ZHOU An-chang;WANG Guang-jie;GUO Yang;CHEN Cai-yun;LI Yong-bing;SHI Yao-lin;University of Chinese Academy of Sciences;Institute of Geology and Geophysics,Chinese Academy of Sciences;Institution of Earth Science,Chinese Academy of Sciences;Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences;
  • 关键词:音频大地电磁测深 ; 乌拉嘎断裂 ; 视电阻率剖面图 ; 成矿机制 ; 电阻率
  • 英文关键词:Magnetotelluric sounding method(AMT);;Wulaga fault;;Apparent resistivity profile;;Metallogenic mechanism;;Resistivity
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国科学院大学;中国科学院地质与地球物理研究所;中国科学院地球科学研究院;中国地质科学院地球物理地球化学勘查研究所;
  • 出版日期:2018-11-02 15:04
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 语种:中文;
  • 页:DQWJ201902017
  • 页数:9
  • CN:02
  • ISSN:11-2982/P
  • 分类号:135-143
摘要
乌拉嘎断裂位于嘉荫凹陷的东缘,对乌拉嘎金矿的成矿的起着关键作用.地质推断的乌拉嘎断裂位于金矿的北部呈NNE展布,理论上可通过电阻率差异分辨出乌拉嘎断裂切实可行.本文采用音频大地电磁测深法(AMT)来观测乌拉嘎断裂的电性特征并获得了高分辨率的视电阻率剖面图,本次观测结果很好的揭示了乌拉嘎断裂的电阻率特征,我们试图通过研究乌拉嘎断裂进而对本区的深部成矿机制进行研究.本次工作初步厘定了乌拉嘎断裂的宽度、深度,实践证明在乌拉嘎地区采用音频大地电磁测深法探测大型断裂构造具有良好效果.
        The Wulaga fault is located in the eastern of the Jialin sag and plays a key role in the mineralization mechanism of the Wulaga gold deposit. The geological inference of the Wulaga fault is located in the north of the gold mine showing NNE. It is practically possible to distinguish the Wulaga fault by resistivity difference. In this paper, the electrical characteristics of the Wulaga fault are observed by the Audio Magnetotelluric sounding method(AMT) and the high-resolution resistivity profile is obtained. The results show that the resistivity of the Wulaga fault is well revealed. The study of the deep mineralization mechanism in this area is carried out. We have tried to study the deep mineralization mechanism in the area by studying the Wulaga fault. The width and depth of the Wulaga fault were initially determined. Practice has proved that the use of Audio Magnetotelluric sounding(AMT) in the Wulaga area to detect large-scale fault structure has a very good effect.
引文
Bao Z Y, Wang J, Yang Y C, et al. 2014. Ore-forming fluid features and genesis of Pingdingshan gold deposit in Jiayin, Heilongjiang[J]. Global Geology (in Chinese), 33(2): 358-366.
    Begbie M J, Sp?rli K B, Mauk J L. 2007. Structural Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand[J]. Economic Geology, 102(5): 873-892.
    Chen W Y, Xu G Q. 2013. Application on coal-mine voids detection with multi-device TEM technology[J]. Progress in Geophysics (in Chinese), 28(5): 2709-2717, doi: 10.6038/pg20130554.
    Chen Y L, Gan F P, Lu C J, et al. 2013. The study of underground river course detection by integrated geophysical methods in bare karst area[J]. Progress in Geophysics (in Chinese), 28(03): 1608-1616, doi: 10.6038/pg20130359.
    Cheng J M. 2008. Application of CSMAT method in hidden coalmine[J]. Progress in Geophysics (in Chinese), 23(4): 1269-1272.
    Ding G M, Zhu Z Q, Chang R F, et al. 2015. Application of integrative geophysical methods to predicting deep ore body in Yechangping molybdenum deposit, Henan province[J]. Progress in Geophysics (in Chinese), 30(01): 325-331, doi: 10.6038/pg20150147.
    Goryachev N A, Pirajno F. 2014. Gold deposits and gold metallogeny of Far East Russia[J]. Ore Geology Reviews, 59: 123-151.
    Guo C H, Yu J Z. 2000. The geological characteristics and regional prospecting direction of the primary gold ore in Wulaga region of Heilongjiang province[C] (in Chinese). “95”The important achievements in geological science and technology exchange: 306-307.
    Guo X H, Qiu C T, Yang M. 2013. The application of the AMT method to the exploration of goaf in the Aermaler coal field, Xinjiang[J]. Geophysical. & Geochemical. Exploration (in Chinese), 37(02): 373-376.
    Han K, Gan F P, Liang Y P, et al. 2015. Audio-frequency Magnetotellurics to reveal the Tectonic Characteristics of the Xiayunling—Changcao Thrust Fault in Western Hills of Beijing and Its Significance[J]. Geological Review (in Chinese), 61(03): 645-650.
    He M X, Hu X Y, Ye Y X, et al. 2011. 2.5 D controlled source audio-frequency magnetotellurics OCCAM inversion[J]. Progress in Geophysics (in Chinese), 26(6): 2163-2170, doi: 10.3969/j.issn.1004-2903.2011.06.033.
    He M X, Zhang X B, Du B R. 2014. Audio Magnetotelluric Detection in the Longweihu Area of Qiangtang tibet[J]. Chinese Journal of Engineering Geophysics (in Chinese), 11(03): 333-337.
    Heald P, Foley N K, Hayba D O. 1987. Comparative anatomy of volcanic-hosted epithermal deposits-Acid sulfate and adularia-sericite types[J]. Economic Geology, 82(1): 1-26.
    Li F Y. 2001. The wulaga deposit model of ore-prospecting and its application[J]. Gold Journal (in Chinese), 22(06): 11-13.
    Li J Q, Zhou K, Jin T H. 2008. Geological characteristics and origin of Tuanjiegou gold deposit Heilongjiang province[J]. Gold(In Chinese with English abstract), 29(06): 19-24.
    Lin F L, Wang G J, Yang X Y. 2016. Application of comprehensive electromagnetic study in deep mineralization mechanism-A case study of the Wuxi polymetallic ore deposit, south Anhui[J]. Chinese Journal of Geophysics (in Chinese), 59(11): 4323- 4337, doi: 10.6038/cjg20161132.
    Liu G X. Electrical prospecting principle and method[M]. Geological publishing house (in Chinese), 2005.
    Meng W, Chen Q C, Wu M L, et al. 2013. Research on segmentation and characteristic of tectonic stress field of Longmenshan Fault Zone[J]. Progress in Geophysics (in Chinese), 28(03): 1150-1160, doi: 10.6038/pg20130306.
    Miao J C, Ruan S, Zhang Y. 2013. The application of the audio magnetotelluric sounging method to the precise interpretation of normal and reverse faults[J]. Geophysical & Geochemical. Exploration (in Chinese), 37(04): 681-686.
    Simmons S F, Arehart G, Simpson M P, et al. 2000. Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag deposit, New Zealand[J]. Economical Geology, 95(1): 99-112.
    Sun B, Li T L, Li H, et al. 2015. Study on the sounding of CSAMT[J]. Progress in Geophysics (in Chinese), 30(02): 836-839, doi: 10.6038/pg20150247.
    Sun F Y, Wang L, Huo L, et al. 2008. Fluid inclusion study on Wulaga gold deposit in Heilongjiang Province and implications for ore genesis[J]. Geology in China (in Chinese), 35(06): 1267-1273.
    Tan H Y, Lv J C, Liu X G, et al. 2011. Application of the Audio-Frequency Magnetotelluric Method to Search for Concealed Ore bodies in Southeastern Hubei Province[J]. Geology and Exploration (in Chinese), 47(06): 1133-1141.
    Tang J T, Ren Z Y, Zhou C, et al. 2015. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review[J]. Chinese Journal of Geophysics (in Chinese), 58(08): 2681-2705, doi: 10.6038/cjg20150807.
    Vadim G K, Natalia G B, Santosh M. 2014. A geodynamic perspective of world-class gold deposits in East Asia[J]. Gondwana Research, 26(3- 4): 816-833.
    Wang G L, Hu Y P, Guo G, et al. 2014. Application of the audio frequency magnetotelluric sounding survey in the Maanshan-Jinshan lead-zinc deposit area,Yunnan[J]. Mineral Exploration (in Chinese), 5(02): 300-306.
    Wang N, Zhao S S, Hui J, et al. 2016. Three-dimensional audio magnetotelluric sounding of coal-bed methane reservoirs in southern Qinshui basin[J]. Progress in Geophysics (in Chinese), 31(06): 2664-2676, doi: 10.6038/pg20160642.
    Wang Q, Wan H P, Wang W W, et al. 2012. The application of integrated geophysical exploration in Bauxite[J]. Progress in Geophysics (in Chinese), 27(02): 709-714, doi: 10.6038/j.issn.1004-2903.2012.02.037.
    Wang Y B, Liu J M, Sun S K, et al. 2012. Zircon U-Pb geochronology, petrogenesis and geological implication of ore-bearing granodiorite porphyry in the Wulaga gold deposit, Heilongjiang Province[J]. Acta Petrologica Sinica (in Chinese), 28(2): 557-570.
    Wu G X, Cheng J, Wang Z Y, et al. 2005. Mineralizion regularity and exploring foreground of area around Wulaga gold deposit[J]. Gold (in Chinese), 26(11): 16-19.
    Wu L P, Shi K F, Li Y H, et al. 1996. Application of CSAMT to the search for groundwater[J]. Chinese Journal Of Geophysics (in Chinese), 39(05): 712-717, 723-724.
    Wu S Q. 1984.Evidence of Isotope Geology on Polygene of the Tuanjiegou Gold Deposit.Isotope geology ,20(02): 28-31.
    Xu J H, Wei H, Wang Y H, et al. 2012. Sub-volcanic hydrothermal mineralization of the Wulaga gold deposit,Heilongjiang,China: Evidences from melt and fluid inclusions[J]. Acta Petrologica Sinica (in Chinese), 28(04): 1305-1316.
    Xue R H, An Z Z, Wang X X, et al. 2016. Probing inner structure of rock mass at a high-level radioactive preselected site in Tamusu,Inner Mongolia[J]. Chinese Journal of Geophysics (in Chinese), 59(06): 2316-2325, doi: 10.6038/cjg20160633.
    Yan Z G, Huang M G, Hu L H. 2016. Application of the Audio Frequency Magnetotelluric Sounding Method in Cu-polymetallic Prospecting[J]. Modern Mining, (5): 102-105.
    Yang J H. 2006. Geological characteristics and origin of Pingdingshan gold deposit[J]. Global Geology (in Chinese), 25(3): 264-269.
    Yang J M, Wei Z Z, Gao X W. 2014. The application of the methods of high density resistivity method and transient electromagnetic to detecting coal mining goaf and to inspect grouting effect[J]. Progress in Geophysics (in Chinese), 29(01): 362-369, doi: 10.6038/pg20140151.
    Yang L B, Zhang S Y, Liu W C. 2014. The application of Occam inversion in AMT data processing for a copper mine search in the west junggar Baogutu area[J]. Progress in Geophysics (in Chinese), 29(02): 853-857, doi: 10.6038/pg20140251.
    Yao D W, Zhu W, Wang D Y, et al. 2015. The effect of applying audio-frequency magnetotelluric method to the deep geological exploration: A case study of Wushan periphery in the Jiurui ore concentration area[J]. Geophysical. & Geochemical. Exploration (in Chinese), 39(01): 100-103.
    Yao W, Li Q, Yang J, et al. 2015. The application and comparation of CSAMT and AMT: an example about Fe-Au mine in Beiya of Yunnan[J]. Progress in Geophysics (in Chinese), 30(04): 1825-1832, doi: 10.6038/pg20150441.
    Zhang J, Chen Y R, Xie T Y, et al. 2010. A tentative discussion on the genesis, ore-controlling regularity and prospecting direction of the Tuanjiegou gold deposit[J]. Geology in China (in Chinese), 37(06): 1710-1719.
    Zhang J K. 2006. The application of controllable source audio frequency magneto telluric sounding to search hidden ore[J]. Gansu Geology (in Chinese), 15(02): 65-67.
    Zhang Zhong-ze, Ren Qi-jiang. 1992. The relationship between the Tuanjiegou porphyry and the mineralization of the golla[J]. Geochemistry(In Chinese with English abstract), (05): 68-70.
    Zhao W J. 2009. Continental Drift, Plate Tectonics and Geomechanics[J]. Acta Geoscientia Sinica (in Chinese), 30(6): 717-731.
    Zhao Z Y, Wang S C, Xu Y M, et al. 2002. The discussion of structure-geochemical prospecting about gold deposit[J]. Gold Geology (in Chinese), 8(03): 57-59.
    Zhou C, Tang J T, Zheng Z Y, et al. 2015. Application of the Rhoplus method to audio magnetotelluric dead band distortion data[J]. Chinese Journal of Geophysics (in Chinese), 58(12): 4648- 4660, doi: 10.6038/cjg20151226.
    Zhou J, Wang C L, Zeng Z. 2008. Application of Audio Magnetotelluric Souding in Western of Panzhihua for Copper Exploration[J]. Inner Mongolia petrochemical industry (in Chinese), 34(01): 104-106.
    包真艳, 王建, 杨言辰, 等. 2014. 黑龙江嘉荫平顶山金矿床成矿流体特征及矿床成因[J]. 世界地质, 33(2): 358-366.
    陈卫营, 薛国强. 2013. 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 28(5): 2709-2717, doi: 10.6038/pg20130554.
    陈玉玲, 甘伏平, 卢呈杰, 等. 2013. 裸露岩溶区地下河管道综合地球物理方法探测研究[J]. 地球物理学进展, 28(03): 1608-1616, doi: 10.6038/pg20130359.
    成江明. 2008. 可控源音频大地电磁法在隐伏煤矿区的应用[J]. 地球物理学进展, 23(4): 1269-1272.
    丁高明, 朱自强, 常荣凤, 等. 2015. 综合物探法在河南夜长坪钼矿深部找矿预测中的应用[J]. 地球物理学进展, 30(01): 325-331, doi: 10.6038/pg20150147
    郭传河, 于金芝. 2000. 黑龙江省乌拉嘎地区原生金矿地质特征及区域找矿方向研究[C]. “九五”全国地质科技重要成果学术交流会: 306-307.
    郭新红, 邱崇涛, 杨明. 2013. 音频大地电磁测深法在新疆阿尔玛勒煤矿采空区勘查中的应用[J]. 物探与化探, 37(02): 373-376.
    韩凯, 甘伏平, 梁永平, 等. 2015. 音频大地电磁测深法揭示的北京西山霞云岭—长操逆冲断层地下构造特征及其意义[J]. 地质论评, 61(03): 645-650.
    何梅兴, 胡祥云, 叶益信. 2011. 2.5维可控源音频大地电磁法Occam反演理论及应用[J]. 地球物理学进展, 26(6): 2163-2170, doi: 10.3969/j.issn.1004-2903.2011.06.033.
    何梅兴, 张小博, 杜炳锐, 等. 2014. 西藏羌塘龙尾湖地区音频大地电磁测深调查[J]. 工程地球物理学报, 11(03): 333-337.
    李凤友. 2001. 乌拉嘎金矿床找矿模型及其应用[J]. 黄金, 22(06): 11-13.
    李景强, 周坤, 金同和. 2008. 黑龙江团结沟金矿床地质特征及矿床成因探讨[J]. 黄金, 29(06): 19-24.
    林方丽, 王光杰, 杨晓勇. 2016. 综合电磁法在矿区深部成矿机制中的应用研究——以皖南乌溪多金属矿区为例[J]. 地球物理学报, 59(11): 4323- 4337, doi: 10.6038/cjg20161132.
    刘国兴. 2005. 电法勘探原理与方法[M]. 北京:地质出版社.
    孟文, 陈群策, 吴满路, 等. 2013. 龙门山断裂带现今构造应力场特征及分段性研究[J]. 地球物理学进展, 28(03): 1150-1160, doi: 10.6038/pg20130306.
    苗景春, 阮帅, 张悦. 2013. 音频大地电磁测深法对正、逆断层的精细解释[J]. 物探与化探, 37(04): 681-686.
    孙博, 李桐林, 李鹤, 等. 2015. 可控源音频大地电磁测深法勘查深度研究[J]. 地球物理学进展, 30(02): 836-839, doi: 10.6038/pg20150247.
    孙丰月, 王力, 霍亮, 等. 2008. 黑龙江乌拉嘎大型金矿床流体包裹体特征及矿床成因研究[J]. 中国地质, 35(06): 1267-1273.
    谭红艳, 吕骏超, 刘桂香, 等. 2011. Eh4音频大地电磁测深方法在鄂东南地区寻找隐伏矿体的应用[J]. 地质与勘探, 47(06): 1133-1141.
    汤井田, 任政勇, 周聪, 等. 2015. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 58(08): 2681-2705, doi: 10.6038/cjg20150807.
    王冠龙, 胡玉平, 郭刚, 等. 2014. 音频大地电磁测深在云南马安山—金山矿区的应用[J]. 矿产勘查, 5(02): 300-306.
    王楠, 赵姗姗, 惠健, 等. 2016. 沁水盆地南部煤层气藏三维音频大地电磁探测[J]. 地球物理学进展, 31(06): 2664-2676, doi: 10.6038/pg20160642.
    王桥, 万汉平, 王闻文, 等. 2012. 综合物探方法在铝土矿勘查中的应用[J]. 地球物理学进展, 27(02): 709-714, doi: 10.6038/j.issn.1004-2903.2012.02.037.
    王永彬, 刘建明, 孙守恪, 等. 2012. 黑龙江省乌拉嘎金矿赋矿花岗闪长斑岩锆石U-Pb年龄、岩石成因及其地质意义[J]. 岩石学报, 28(2): 557-570.
    吴国学, 程军, 汪振涌, 等. 2005. 乌拉嘎金矿周边地区成矿规律及找矿前景[J]. 黄金, 26(11): 16-19.
    吴璐苹, 石昆法, 李荫槐, 等. 1996. 可控源音频大地电磁法在地下水勘查中的应用研究[J]. 地球物理学报, 39(05): 712-717, 723-724.
    吴尚全. 1984. 团结沟斑岩金矿床多源成因的同位素地质学证据[J]. 同位素地质,20(02): 28-31.
    徐九华, 魏浩, 王燕海, 等. 2012. 黑龙江乌拉嘎金矿的次火山岩浆-热液成矿:熔体-流体包裹体证据[J]. 岩石学报, 28(04): 1305-1316.
    薛融晖, 安志国, 王显祥, 等. 2016. 利用电磁方法探测内蒙古塔木素高放废物预选场址岩体的内部构造[J]. 地球物理学报, 59(06): 2316-2325, doi: 10.6038/cjg20160633.
    杨金和. 2006. 平顶山岩金矿床地质特征及成因探讨[J]. 世界地质, 25(3): 264-269.
    杨镜明, 魏周政, 高晓伟. 2014. 高密度电阻率法和瞬变电磁法在煤田采空区勘查及注浆检测中的应用[J]. 地球物理学进展, 29(01): 362-369, doi: 10.6038/pg20140151.
    杨龙彬, 张胜业, 刘文才. 2014. Occam反演在西准噶尔包古图地区某铜矿AMT资料处理中的应用[J]. 地球物理学进展, 29(02): 853-857, doi: 10.6038/pg20140251.
    姚大为, 朱威, 王大勇, 等. 2015. 音频大地电磁法在武山外围深部勘查中的应用[J]. 物探与化探, 39(01): 100-103.
    姚文, 李琼, 杨剑, 等. 2015. 可控源与天然源音频大地电磁法对比应用研究:以云南北衙铁金矿为例[J]. 地球物理学进展, 30(04): 1825-1832, doi: 10.6038/pg20150441.
    章丹贵,赵虎,等.2015.音频大地电磁测深法在大金山隧道勘探中的应用[J].铁道建筑技术.10:45- 48. doi:10.3969/j.issn.1009- 4539.2015.10.013.
    张璟, 陈远荣, 谢桃园, 等. 2010. 团结沟金矿矿床成因、构造控矿规律与找矿方向浅析[J]. 中国地质, 37(06): 1710-1719.
    张建奎. 2006. 可控源音频大地电磁测深在寻找隐伏矿体中的应用[J]. 甘肃地质, 15(02): 65-67.
    张重泽, 任启江. 1992. 团结沟花岗闪长斑岩与金矿化的关系[J]. 地质地球化学, (05): 68-70.
    赵文津. 2009. 大陆漂移,板块构造,地质力学[J]. 地球学报, 30(6): 717-731.
    赵震宇, 王世称, 许亚明, 等. 2002. 关于金矿构造化探问题的探讨[J]. 黄金地质, 8(03): 57-59.
    周聪, 汤井田, 任政勇, 等. 2015. 音频大地电磁法“死频带”畸变数据的Rhoplus校正[J]. 地球物理学报, 58(12): 4648- 4660, doi: 10.6038/cjg20151226.
    周军, 王成龙, 曾珍. 2008. 音频大地电磁测深在攀西铜矿勘探中的应用[J]. 内蒙古石油化工, 34(01): 104-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700