涡流管与制冷工质的耦合特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of the Coupling Characteristics Between a Vortex Tube and Refrigerants
  • 作者:黎念 ; 陈光明
  • 英文作者:LI Nian;CHEN Guang-Ming;Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics,Zhejiang University;
  • 关键词:涡流管 ; 能量分离 ; 制冷工质 ; 温差 ; 比焓差
  • 英文关键词:vortex tube;;energy separation;;refrigerants;;temperature difference;;specific enthalpy difference
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:浙江省制冷与低温技术重点实验室浙江大学制冷与低温研究所;
  • 出版日期:2019-01-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(No.51776187)
  • 语种:中文;
  • 页:GCRB201901005
  • 页数:8
  • CN:01
  • ISSN:11-2091/O4
  • 分类号:30-37
摘要
鉴于涡流管已开始应用于制冷系统中的现状,需要研究涡流管与制冷工质的耦合特性并寻找适合的工质及其工作流程。本文搭建了闭式实验系统,选用R134a、R744、R32以及R227ea作为工质,研究了在不同进口压力(500~850kPa),进口温度(308.15~333.15 K),以及不同冷流比(0.1~0.97)工况下涡流管与制冷工质的耦合特性。实验发现,随着R134a的进口压力增大,其制冷效应逐步增强而制热效应逐步减弱;R134a进口温度的变化对于温度分离效应的影响不大;不同冷流比工况下R134a的温度分离效应与空气等自然工质相类似,但其制热效应为负值。此外,本文还探索了工质物性对于涡流管温度分离特性的影响,分析认为绝热指数k、压缩因子z以及运动黏度v为影响涡流管分离效应的主要参数。
        Due to the fact that vortex tubes are increasingly applied in the refrigeration and heating systems, it is necessary to study the coupling characteristics between the vortex tube and refrigerants and find optimal working conditions of different systems. A closed system was built in this work,R134 a, R744, R32, and R227 ea were selected as working fluids, the effects of different inlet pressure(500-850 kPa), inlet temperature(308.15-333.15 K) and different cold flow ratio(0.1-0.97) were explored. It was found that with the increase of the inlet pressure of R134 a, the cooling effect was gradually enhanced while the heating effect was gradually weakened. The inlet temperature of R134 a had little effect on the temperature separation effect. The temperature separation effect of R134 a under different cold flow conditions was similar to that of air and other natural working fluid were used, but its heating effect was negative. In addition, the influence of the physical properties of the working fluids on the temperature separation performance of the vortex tube was explored. The results showed that the adiabatic index k, the compression factor z and the kinematic viscosity v were the main parameters that affect the separation effect of the vortex tube.
引文
[1] Ranque G J. Method and Apparatus for Obtaining from a Fluid under Pressure Two Outputs of Fluid at Different Temperatures[P]. US Patent, 1934, 1:952,281
    [2] Hilsch R. The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process[J]. Review of Scientific Instruments, 1947, 18(2):108-113
    [3] Aydin O, Baki M. An Experimental Study on the Design Parameters of a Counter Flow Vortex Tube[J]. Energy,2006, 31(14):2763-2772
    [4]周少伟,姜任秋,宋福元等.入口压力与冷气流率对涡流管制冷性能影响研究[J].应用基础与工程科学学报,2006, 14(4):543-549ZHOU shaowei, JIANG Renqiu, SONG Fuyuan, et al.Experimental Investigations Into the Influences of Inlet Pressure and Cold Air Fraction on the Refrigerating Performance of a Vortex Tube[J]. Journal of Basic Science and Engineering, 2006, 14(4):543-549
    [5] Westley R. Vortex tube performance data sheets[D]. Bedfordshire:The College of Aeronautics Cranfield, 1957
    [6] Gulyaev A I. Vortex Tubes and the Vortex Effect(Ranque Effect)[J].Soviet Physics-Technical Physics, 1965, 10:211-216
    [7]曹勇.小流量涡流管特性的理论与实验研究[D].杭州:浙江大学,2003CAO Yong. Theoretical and Experimental Study on the Performance of Small Flow Vortex Tube[D]. Hangzhou:Zhejiang University, 2003
    [8] Im S Y, Yu S S. Effects of Geometric Parameters on the Separated Air Flow Temperature of a Vortex Tube for Design Optimization[J]. Energy, 2012, 37(1):154-160
    [9] Bruno T. J. Laboratory Applications of the Vortex Tube[J]. Journal of Chemical Education. 1987, 64(11):987-988
    [10]张王宗,李保华.涡流制冷方式在工业领域的应用[J].洁净与空调技术,2006(3):51-53ZHANG Wangzong, LI Baohua. Application of Vortex Cooling in Industry[J]. Contamination Control&AirConditioning Technology, 2006(3):51-53
    [11] Cazzini K H, Jusiak J T. Medical Configuration of Vortex Tubes and Method of Use:United States, US20040000836[P]. 2004-12-01
    [12] Vonnegut B. Vortex Thermometer for Measuring True Air Temperature and True Air Speeds in Flight[J]. Review of Scientific Instruments, 1950, 21(2):136-141
    [13] Jacob S, Kasthurirengan S, Karunanithi R, et al. Oxygen Separation Using Cryogenic Vortex Tube[J]. Advances in Cryogenic Engineering, 2000:45 1771-1777
    [14] Hooper F C, Ambrose C W. Improved Expansion Process for the Vapor Refrigeration Cycle[C]//Proceedings of Fourth Canadian Congress of Applied Mechanics, 1973:811-812
    [15] Christensen K G, Heiredal M, Kauffeld M, et al. Energy Savings in Refrigeration by Means of a New Expansion Device[R]. Report of Energy Research Programme, Journal 1223/99-0006, 2001
    [16] Li D, Baek J S, Groll E A, et al. Thermodynamic Analysis of Vortex Tube and Work Output Expansion Devices for the Transcritical Carbon Dioxide Cycle[C]//Fourth IIRGustav Lorentzen Conference on Natural Working Fluids at Purdue, Purdue University, USA, 2000:433-440
    [17] Sarkar J. Cycle parameter Optimization of Vortex Tube Expansion Transcritical CO2 System[J]. International Journal of Thermal Sciences, 2009, 48(9):1823-1828
    [18] Maurer T. Entspannungseinrichtung:Germany, Patent DE19748083 A1[P]. 1974
    [19] Keller J, Gobel M. The Thermo-Valve:a Device for Expanding Compressed Liquids and Simultaneously Gaining Heat[J]. Ki Luft-und K(a|¨)ltetechnik, 1997(2):57-60
    [20] Kirmaci V. Exergy Analysis and Performance of a Counter Flow Ranque-Hilsch Vortex Tube Having Vari-ous Nozzle Numbers at Different Inlet Pressures of Oxygen and Air[J]. International Journal of Refrigeration, 2009,32(7):1626-1633
    [21] Collins R L, Lovelace R B. Experimental Study of TwoPhase Propane Expanded through the Ranque-Hilsch Tube[J]. Journal of Heat Transfer, 1979, 101(2):300-305
    [22] Ranque G J. Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air[J]. Le Journal de Physique et Le Radium, 1933, 115(4):112-114
    [23] Lay J E. An Experimental and Analytical Study of VortexFlow Temperature Separation by Superposition of Spiral and Axial Flow, Part II[J]. Journal of Heat Transfer, 1959,81:213-222
    [24] Scheper G W. The Vortex Tube:Internal Flow Date and a Heat Transfer Theory[J]. Journal of the ASRE:Refrigeration Engineering, 1951, 59:985-989
    [25] Kurosaka M. Acoustic Streaming in Swirling Flow and the Ranque-Hilsch(Vortex-Tube)Effect[J].Journal of Fluid Mechanics, 1982, 124(1):139-172
    [26] Ahlborn B, Groves S. Secondary Flow in a Vortex Tube[J]. Fluid Dynamics Research, 1997, 21:73-86
    [27] Yilmaz M, Kaya M, Karagoz S, et al. A Review on Design Criteria for Vortex Tubes[J]. Heat and Mass Transfer,2009, 45(5):613-632
    [28] Han X H, Li N, Wu K X, et al. The Influence of Working Gas Characteristics on Energy Separation of Vortex Tube[J].Applied Thermal Engineering, 2013, 61(2):171-177
    [29] Li N, Zeng Z Y, Wang Z, et al. Experimental Study of the Energy Separation in a Vortex Tube[J]. International Journal of Refrigeration, 2015, 55:93-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700