石碌含笑光合及固碳特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photosynthetic and Carbon Sequestration Characteristics of Michelia shiluensis Chun et Y.F. Wu
  • 作者:张鹏 ; 许逸林 ; 奚如春
  • 英文作者:ZHANG Peng;XU Yilin;XI Ruchun;College of Forestry and Landscape Architecture, South China Agricultural University;Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm;
  • 关键词:石碌含笑 ; 光合特性 ; 固碳能力
  • 英文关键词:Michelia shiluensis Chun et Y.F.Wu;;photosynthesis;;carbon sequestration
  • 中文刊名:RDZX
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:华南农业大学林学与风景园林学院;广东省森林植物种质创新与利用重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:热带作物学报
  • 年:2019
  • 期:v.40
  • 基金:林业公益性行业科研专项(No.201404116);; 广东省省级科技计划项目(No.2014KJCX006)
  • 语种:中文;
  • 页:RDZX201902007
  • 页数:7
  • CN:02
  • ISSN:46-1019/S
  • 分类号:52-58
摘要
本文以石碌含笑二年生嫁接苗为研究对象,采用LI-6400便携式光合仪对其光合参数特征进行测定分析,并对其固碳释氧量进行估算,综合评价其适应性及生态效应。结果表明:石碌含笑的四季净光合速率(Pn)日变化并非呈现单一的双峰。1月、4月、7月的变化曲线为双峰型,10月为单峰型。石碌含笑不同月份Pn日均值由大到小依次为:10月>7月>4月>1月。其生长旺盛期在10月,石碌含笑在大气温度较低和光强较弱的秋季反而有更高的光合速率。石碌含笑的光补偿点低而光饱和点较高,说明能够适应不同的光照环境,在强光环境和弱光环境都有较强的光能利用能力。石碌含笑全年日均净固碳量为10.07 g/(m~2·d),拥有较强固碳能力。石碌含笑对强弱光均有较强的利用能力,在华南地区炎热气候条件下也具有"午休"的适应性自我调节机制,并且拥有较强的碳汇能力,兼具良好的景观效益与优良的生态效益,因此适合在华南地区推广种植。
        In this study, two-year-old Michelia shiluensis grafting seedlings were studied. In order to evaluate the adaptation and its ecological effect of M. shiluensis, a LI-6400 portable photosynthetic system was used to measure the photosynthetic characteristics and estimate their carbon sequestration. The results showed that the variations of net photosynthetic rate(Pn) in M. shiluensis did not present a single bimodal in four seasons of a year. The change curve of January, April and July was bimodal, but that in October is unimodal. In different months, Pn changed from the largest to the smallest in the following order: October, July, April and January. M. shiluensis grew fastest in October. There was a higher photosynthetic rate in autumn with lower atmospheric temperature and weaker light intensity. The light compensation point was low and light saturation point was high, indicating that M. shiluensis could be adapted to different lighting environments. The annual average daily net solid carbon content was 10.07 g/(m~2·d), with strong carbon sequestration ability. The results indicate that M. shiluensis can be adapted to both the strong and weak lighting. Under hot weather conditions in South China, it also has the adaptive self-regulation mechanism of "siesta", and had strong carbon sink ability, with good landscape efficiency and excellent ecological benefits, and it is suitable for planting in southern China.
引文
[1]汪松,解焱.中国物种红色名录[M].北京:高等教育出版社,2004:28.
    [2]Cicuzza D,Newton A,Oldfield S.The Red List of Magnoliaceae[M].Cambridge:Botanic Gardens Conservation International,2007:36.
    [3]中国科学院华南植物研究所.海南植物志[M].北京:科学出版社,1964:382-383.
    [4]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1964.
    [5]王发国,张荣京,邢福武,等.海南鹦哥岭自然保护区的珍稀濒危植物与保育[J].武汉植物学研究,2007,25(3):303-309.
    [6]魏亚情,洪峰,袁浪兴,等.海南特有濒危植物石碌含笑的分布现状与种群年龄结构特征[J].热带作物学报,2017,38(12):2280-2284.
    [7]刘玉壶,夏念和,杨惠秋.木兰科(Magnoliaceae)的起源、进化和地理分布[J].热带亚热带植物学报,1995,5(4):1-12.
    [8]潘晨,朱希扬,贾文晓,等.上海市近地面CO2浓度及其与下垫面特征的定量关系[J].应用生态学报,2015,26(7):2123-2130.
    [9]Boardman N K.Comparative photosynthesis of sun and shade plants[J].Annual Review of Plant Physiology,1977,28(1):355-377.
    [10]Ma C C,Gao Y B,Guo H Y,et al.Photosynthesis,transpiration,and water use efficiency of Caragana microphylla,C.intermedia,and C.korshinskii[J].Photosynthetica,2004,42(1):65-70.
    [11]Fang J,Guo Z,Hu H,et al.Forest biomass carbon sinks in East Asia,with special reference to the relative contributions of forest expansion and forest growth[J].Global Chang Biology,2014,20(6):2019-2030.
    [12]Mcgarvey J C,Thompson J R,Epstein H E,et al.Carbon storage in old-growth forests of the Mid-Atlantic:toward better understanding the eastern forest carbon sink[J].Ecology,2015,96(2):311-317.
    [13]Baccini A,Walker W,Carvalho L,et al.Tropical forests are a net carbon source based on aboveground measurements of gain and loss[J].Science,2017,358(6360):230-233.
    [14]薛龙飞,罗小锋,李兆亮,等.中国森林碳汇的空间溢出效应与影响因素--基于大陆31个省(市、区)森林资源清查数据的空间计量分析[J].自然资源学报,2017,32(10):1744-1754.
    [15]郭起荣,俞志雄,施建敏.华木莲与木莲属两树种光合生理生态研究[J].江西农业大学学报,2003,25(5):645-651.
    [16]马加芳,李贵祥,柴勇,等.不同生境的长蕊木兰幼苗春季的光合特性[J].东北林业大学学报,2017,61(4):43-48.
    [17]郎校安,杨蕾蕾,崔铁成,等.红花深山含笑光合速率日变化及其与环境因子的关系[J].西南林业大学学报(自然科学),2017,37(4):22-27.
    [18]莫亚鹰,余金良,黎念林,等.九种木兰科常绿树种的光合与固碳特性研究[J].北方园艺,2016,40(17):82-86.
    [19]叶子飘,王建林.植物光合-光响应模型的比较分析[J].井冈山学院学报(自然科学版),2009,30(2):9-13.
    [20]Arnon D I.Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris[J].Plant physiology,1949,24(1):1-15.
    [21]王玉萍,高会会,刘悦善,等.高山植物光合机构耐受胁迫的适应机制[J].应用生态学报,2013,24(7):2049-2055.
    [22]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,24(4):241-244.
    [23]And G D F,Sharkey T D.Stomatal conductance and photosynthesis[J].Annual Review of Plant Physiology,2003,33(33):317-345.
    [24]李梦.木兰科集中常用绿化树种光和特性及固碳能力研究[D].杭州:浙江农林大学,2014.
    [25]朱贤良,严理秦,武明,等.4种木莲幼苗生长特性与光合生理研究[J].山西农业科学,2014,42(11):1163-1168.
    [26]邵永昌,庄家尧,王柏昌,等.上海地区主要绿化树种夏季光合特性和固碳释氧能力研究[J].安徽农业大学学报,2016,60(1):94-101.
    [27]林欣,林晨菲,刘素青,等.18种常见灌木绿化树种光合特性及固碳释氧能力分析[J].热带农业科学,2014,35(12):30-34.
    [28]刘海荣,宋力,鲜靖苹.5种常用灌木固碳释氧能力的比较研究[J].安徽农业大学学报,2009,53(2):204-207.
    [29]王丽勉,胡永红,秦俊,等.上海地区151种绿化植物固碳释氧能力的研究[J].华中农业大学学报,2007,52(3):399-401.
    [30]张娇,李海明,施拥军,等.30种平原绿化乔木树种光合固碳特性分析[J].西南林业大学学报,2012,32(6):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700