生物型cage椎间骨整合:界面的组织细胞学特性及骨整合愈合机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biological cage in intervertebral bone integration: histocytological properties of interface and healing mechanism of osseointegration
  • 作者:贾鹏 ; 张涛
  • 英文作者:Jia Peng;Zhang Tao;Department of Limb Orthopedics and Reconstruction, Tianjin Hospital;
  • 关键词:生物降解型cage ; 表面改性 ; 组织工程技术 ; 仿生生物技术 ; 动物模型 ; 磨损颗粒 ; 椎间骨整合 ; 生物相容性 ; 降解特性 ; 力学特性
  • 英文关键词:biodegradable cage;;surface modification;;tissue engineering;;bionic biomedicine;;animal models;;wear particle;;intervertebral bone integration;;biocompatibility;;degradation properties;;mechanical properties
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:天津市天津医院肢体矫形与重建病区;
  • 出版日期:2019-07-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.883
  • 语种:中文;
  • 页:XDKF201926028
  • 页数:6
  • CN:26
  • ISSN:21-1581/R
  • 分类号:155-160
摘要
背景:目前,生物降解型cage具有良好的力学强度及生物相容性,在脊柱矫形、纳米材料及仿生生物医学领域作为自体骨替代修复材料的应用越来越广泛,但其效果仍存在争议。目的:文章总结并讨论生物型cage设计理念、生物力学特点、降解特性和基础及临床研究,旨为生物型cage的临床应用提供依据。方法:由第一作者用计算机检索中国知网、万方及PubMed数据库,检索词分别为:"生物降解型cage、生物相容性、降解特性、力学特性"和"biological cage,biocompatibility,degradation properties,mechanical properties",语言分别设定为中文和英文。从生物型cage的制备、力学、降解特性及实验方面进行总结介绍。结果与结论:共检索到132篇文献,按纳入和排除标准对文献进行筛选,共纳入48篇文献。结果表明:双相或多相材料组合成为生物型cage的设计主流,组织工程学及材料表面改性使其有效地促进椎间融合。目前主要的缺点是其自身降解性所造成的力学不稳定及无菌性炎症等仍需进一步深入研究。以聚乳酸及其衍生物为主的生物型cage已应用于临床,尤其以聚乳酸与β-磷酸三钙组合可互相取长补短,该混合共聚物可同时满足融合过程中的机械性能及生物相容性,但cage的曲率、位置及与上下终板的匹配程度是影响椎间骨整合的重要因素,在使用时需高度注意。然而,椎间骨整合的确切机制尚不明确,相关细胞因子的基因表达、信号通路传导、cage对骨修复细胞增殖的影响及cage无菌性松动等仍需进一步探索。
        BACKGROUND: Biological cage has been widely used in the fields of spinal orthopedics, nanometer materials and bionic biomedicine as the substitutes of new bone repair materials due to its high mechanical properties and biocompatibility. However, its effects remain controversial.OBJECTIVE: To summarize and discuss the current design conception, biomechanical characteristics,degradation properties, basic and clinical research of biological cage, so as to provide basis for clinical application of biological cage.METHODS: CNKI, WanFang and PubMed databases were retrieved with the key words "biological cage,biocompatibility, degradation properties, mechanical properties" in Chinese and English, respectively. The preparation, mechanics, degradation characteristics and experiments of biological cage were summarized.RESULTS AND CONCLUSION: One hundred and thirty-two articles were retrieved and 48 eligible articles were included according to inclusion and exclusion criteria. The combination of biphasic or mutiphase materials has become the mainstream of cage design, and tissue engineering and surface modification have effectively promoted the intervertebral fusion. At present, the main drawbacks are the mechanical instability and aseptic inflammation caused by its own degradability which still needs to be further explored. The biological cage based on polylactic acid and β-tricalcium phosphate can complement each other. This copolymer can simultaneously meet the mechanical properties and biocompatibility during the fusion. What needs attention is that the curvature of cage, place position and matching degree with the upper and lower endplates are important factors affecting the intervertebral bone integration. However, the concrete mechanism of osteointegration remains unclear. The gene expression of the cytokines, the signaling pathway, the effect of the cage on the bone repairing cell proliferation and aseptic cage loosening need further exploration.
引文
[1]Ke X,Zhang L,Yang X,et al.Low-melt bioactive glass-reinforced 3Dprinting akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion.J Tissue Eng Regen Med.2018;12(5):1149-1162.
    [2]Li H,Yan Y,Wei J,et al.Bone substitute biomedical material of multi-(amino acid)copolymer:in vitro degradation and biocompatibility.JMater Sci Mater Med.2011;22(11):2555-2563.
    [3]Zhou Z,Yao Q,Li L,et al.Antimicrobial activity of 3D-printed poly(epsilon-Caprolactone)(PCL)composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid(PLGA)microspheres.Med Sci Monit.2018;24:6934-6945.
    [4]Daentzer D,Floerkemeier T,Bartsch I,et al.Preliminary results in anterior cervical discectomy and fusion with an experimental bioabsorbable cage-clinical and radiological findings in an ovine animal model.Springerplus.2013;2:418.
    [5]Von AT,Buser D.Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes:a clinical study with 42 patients.Clin Oral Implants Res.2006;17(4):359-366.
    [6]Lohfeld S,Cahill S,Barron V,et al.Fabrication,mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds.Acta Biomater.2012;8(9):3446-3456.
    [7]Ergun A,Chung R,Ward D,et al.Unitary bioresorbable cage/core bone graft substitutes for spinal arthrodesis coextruded from polycaprolactone biocomposites.Ann Biomed Eng.2012;40(5):1073-1087.
    [8]Wang M,Abbah SA,Hu T,et al.Polyelectrolyte complex carrier enhances therapeutic efficiency and safety profile of bone morphogenetic protein-2 in porcine lumbar interbody fusion model.Spine(Phila Pa 1976).2015;40(13):964-973.
    [9]Dong Z,Li B,Liu B,et al.Platelet-rich plasma promotes angiogenesis of prefabricated vascularized bone graft.J Oral Maxillofac Surg.2012;70(9):2191-2197.
    [10]Ma F,Chen S,Liu P,et al.Improvement of beta-TCP/PLLAbiodegradable material by surface modification with stearic acid.Mater Sci Eng C Mater Biol Appl.2016;62:407-413.
    [11]郭洪刚,刘静,李峰坦,等.基于三维CT图像辅助研制表面纳米化的仿生椎间融合器[J].中国组织工程研究,2012,16(21):3851-3854.
    [12]Llorens E,Calderon S,Del VL,et al.Polybiguanide(PHMB)loaded in PLA scaffolds displaying high hydrophobic,biocompatibility and antibacterial properties.Mater Sci Eng C Mater Biol Appl.2015;50:74-84.
    [13]Pan Z,Ding J.Poly(lactide-co-glycolide)porous scaffolds for tissue engineering and regenerative medicine.Interface Focus.2012;2(3):366-377.
    [14]Knutsen AR,Borkowski SL,Ebramzadeh E,et al.Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.J Mech Behav Biomed Mater.2015;49:332-342.
    [15]Zhou C,Song Y,Tu C,et al.Biomechanical evaluation of immediate stability of biodegradable multi-amino acid copolymer/tri-calcium phosphate composite interbody Cages in a goat cervical spine model.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2011;28(1):63-66.
    [16]Farrokhi MR,Torabinezhad S,Ghajar KA.Pilot study of a new acrylic cage in a dog cervical spine fusion model.J Spinal Disord Tech.2010;23(4):272-277.
    [17]Abbah SA,Lam CX,Hutmacher DW,et al.Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery.Biomaterials.2009;30(28):5086-5093.
    [18]黄帆.部分可吸收椎间融合器应用于恒河猴腰椎融合的研究[D].重庆:重庆医科大学,2013.
    [19]Shiels SM,Talley AD,McGough M,et al.Injectable and compressionresistant low-viscosity polymer/ceramic composite carriers for rhBMP-2in a rabbit model of posterolateral fusion:a pilot study.J Orthop Surg Res.2017;12(1):107.
    [20]Han X,Zhang W,Gu J,et al.Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats.PLoS One.2014;9(5):e98480.
    [21]Kandziora F,Pflugmacher R,Scholz M,et al.Comparison between sheep and human cervical spines:an anatomic,radiographic,bone mineral density,and biomechanical study.Spine(Phila Pa 1976).2001;26(9):1028-1037.
    [22]丁金勇,钱莘,刘涛,等.新型组合式腰椎间融合器的研制和体内融合实验的初步研究[J].第三军医大学学报,2009,31(10):938-940.
    [23]Li Y,Wu ZG,Li XK,et al.A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.Biomaterials.2014;35(22):5647-5659.
    [24]Cao L,Duan PG,Li XL,et al.Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized beta-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models.Int J Nanomedicine.2012;7:5875-5880.
    [25]Yin X,Jiang L,Yang J,et al.Application of biodegradable 3D-printed cage for cervical diseases via anterior cervical discectomy and fusion(ACDF):an in vitro biomechanical study.Biotechnol Lett.2017;39(9):1433-1439.
    [26]Kandziora F,Pflugmacher R,Schafer J,et al.Biomechanical comparison of cervical spine interbody fusion cages.Spine(Phila Pa 1976).2001;26(17):1850-1857.
    [27]Greene DL,Crawford NR,Chamberlain RH,et al.Biomechanical comparison of cervical interbody cage versus structural bone graft.Spine J.2003;3(4):262-269.
    [28]Engels TA,Sontjens SH,Smit TH,et al.Time-dependent failure of amorphous polylactides in static loading conditions.J Mater Sci Mater Med.2010;21(1):89-97.
    [29]Smit TH,Engels TA,Sontjens SH,et al.Time-dependent failure in load-bearing polymers:a potential hazard in structural applications of polylactides.J Mater Sci Mater Med.2010;21(3):871-878.
    [30]Sontjens SH,Engels TA,Smit TH,et al.Time-dependent failure of amorphous poly-D,L-lactide:influence of molecular weight.J Mech Behav Biomed Mater.2012;13:69-77.
    [31]滕海军,周跃,范丽静,等.可吸收腰椎间融合器降解过程的动物实验研究[J].颈腰痛杂志,2010,31(1):16-19.
    [32]Lochner K,Fritsche A,Jonitz A,et al.The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles.Int J Mol Med.2011;28(6):1055-1063.
    [33]Elsner JJ,Shemesh M,Mezape Y,et al.Long-term evaluation of a compliant cushion form acetabular bearing for hip joint replacement:a 20million cycles wear simulation.J Orthop Res.2011;29(12):1859-1866.
    [34]Kienle A,Graf N,Wilke HJ.Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?Spine J.2016;16(2):235-242.
    [35]Jiya T,Smit T,Deddens J,et al.Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices:a prospective,randomized study to assess fusion and clinical outcome.Spine(Phila Pa 1976).2009;34(3):233-237.
    [36]Schimmel JJ,Poeschmann MS,Horsting PP,et al.PEEK cages in lumbar fusion:mid-term clinical outcome and radiologic fusion.Clin Spine Surg.2016;29(5):E252-E258.
    [37]Wuisman PI,Smit TH.Bioresorbable polymers:heading for a new generation of spinal cages.Eur Spine J.2006;15(2):133-148.
    [38]Oka K,Murase T,Moritomo H,et al.Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation.Int J Med Robot.2010;6(2):186-193.
    [39]Deyo RA.Fusion surgery for lumbar degenerative disc disease:still more questions than answers.Spine J.2015;15(2):272-274.
    [40]Debusscher F,Aunoble S,Alsawad Y,et al.Anterior cervical fusion with a bio-resorbable composite cage(beta TCP-PLLA):clinical and radiological results from a prospective study on 20 patients.Eur Spine J.2009;18(9):1314-1320.
    [41]Brenke C,Kindling S,Scharf J,et al.Short-term experience with a new absorbable composite cage(beta-tricalcium phosphate-polylactic acid)in patients after stand-alone anterior cervical discectomy and fusion.Spine(Phila Pa 1976).2013;38(11):E635-E640.
    [42]Yang X,Liu L,Song Y,et al.Outcome of single level anterior cervical discectomy and fusion using nano-hydroxyapatite/polyamide-66 cage.Indian J Orthop.2014;48(2):152-157.
    [43]Smith AJ,Arginteanu M,Moore F,et al.Increased incidence of cage migration and nonunion in instrumented transforaminal lumbar interbody fusion with bioabsorbable cages.J Neurosurg Spine.2010;13(3):388-393.
    [44]Deng QX,Ou YS,Zhu Y,et al.Clinical outcomes of two types of cages used in transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases:n-HA/PA66 cages versus PEEK cages.JMater Sci Mater Med.2016;27(6):102.
    [45]Calvo-Echenique A,Cegonino J,Chueca R,et al.Stand-alone lumbar cage subsidence:a biomechanical sensitivity study of cage design and placement.Comput Methods Programs Biomed.2018;162:211-219.
    [46]Krijnen MR,Mullender MG,Smit TH,et al.Radiographic,histologic,and chemical evaluation of bioresorbable 70/30 poly-L-lactide-CO-D,L-lactide interbody fusion cages in a goat model.Spine(Phila Pa 1976).2006;31(14):1559-1567.
    [47]Landes C,Ballon A,Ghanaati S,et al.Evaluation of the Fatigue Performance and Degradability of Resorbable PLDLLA-TMCosteofixations.Open Biomed Eng J.2013;7:133-146.
    [48]Yamagata T,Takami T,Uda T,et al.Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion:cage subsidence and cervical alignment.J Clin Neurosci.2012;19(12):1673-1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700