基于黎曼不变量守恒的轴流压气机反问题设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Axial Compressor Inverse Design Method Based on Conservation of Riemann Invariant
  • 作者:刘昭威 ; 吴虎
  • 英文作者:LIU Zhao-wei;WU Hu;School of Power and Energy,Northwestern Polytechnical University;
  • 关键词:反问题设计方法 ; 轴流压气机 ; 反问题边界条件 ; 静压分布
  • 英文关键词:Inverse design method;;Axial compressor;;Inverse boundary condition;;Pressure distribution
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西北工业大学动力与能源学院;
  • 出版日期:2017-05-24 11:52
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.241
  • 语种:中文;
  • 页:TJJS201707008
  • 页数:8
  • CN:07
  • ISSN:11-1813/V
  • 分类号:57-64
摘要
基于一种全新的轴流压气机叶片反问题设计边界条件,发展了一种全新的三维粘性反问题设计方法。该方法以叶片表面静压分布作为输入的气动性能参数,叶片吸、压力面型线为设计对象。全新的反问题边界条件采用壁面边界处黎曼不变量守恒建立起给定的气动参数分布与叶片几何变化量之间的关系。由于计算过程中叶片几何构型不断发生变化,采用动网格技术对计算网格进行更新。为了验证方法的有效性,采用NASA Rotor 37作为算例,进行叶片返回试验,对叶片表面静压分布进行合理修改,通过反问题设计计算,设计出新的叶片几何构型。计算结果显示,反问题设计很好地满足了给定的叶片表面静压分布,正确地反映了设计意图。改型后的叶片吸力面逆压梯度有所降低,气流分离得到抑制,压气机流量、总压比以及效率分别提高了0.7%,2.2%和1.0%,验证了方法的有效性和正确性。
        A new three dimensional viscous inverse design method, which is based on a new inverse boundary condition,is developed for axial compressor blade. The blade surface static pressure distribution is used as design input and the both the blade pressure and suction side profile is the design object. The conservation of Riemann invariant on the blade surface is applied to establish the relationship between the prescribed aerodynamic parameters and the blade geometry variation. The blade geometry keeps changing during the design procession,the dynamic mesh technique is used for updating the computational mesh. In order to validate the effectiveness of present method,the NASA Rotor 37 is chosen as the test case. The blade recovery test is carried out first. Then,the blade surface static pressure distribution is modified reasonably,and a new blade geometry is designed by the inverse method. The design results show the prescribed static pressure distribution is achieved by the inverse design and the design intent is reflected correctly. The adverse pressure gradient on the blade suction surface of modified blade geometry is reduced. The flow separation is controlled and mass flow,total pressure ratio and adiabatic efficiency of compressor is improved by 0.7%,2.2% and 1.0%,respectively,which demonstrated the effectiveness and accuracy of present inverse design method.
引文
[1]Sanz J M.Automated Design of Controlled-Diffusion Blades[J].Journal of Turbomachinery,1988,110(4):540-544.
    [2]Sanz J M.Lewis Inverse Design Code(LINDES)[R].NASA-TP-2676,1987.
    [3]Dang T Q.A Fully Three-Dimensional Inverse Method for Turbomachinery Blading in Transonic Flows[J].ASME Journal of Turbomachinery,1993.115(2):354-361.
    [4]Ahmadi M,Ghaly W.Aerodynamic Inverse Design of Turbomachinery Cascades Using a Finite Volume Method on Unstructured Meshes[J].Inverse Problems in Science and Engineering,1998,6(4):281-298.
    [5]Qiu X W,Dang T Q.3D Inverse Method for Turbomachine Blading with Splitter Blades[R].ASME 2000-GT-0526.
    [6]Mileshin P C,Van Rooij,Dang T Q,et al.Enhanced Blade Row Matching Capabilities via 3D Multistage Inverse Design and Pressure Loading Manager[R].ASME GT 2008-50539.
    [7]Van Rooij,Meed A.Reformulation of a Three-Dimensional Inverse Design Method for Application in a High-Fidelity CFD Environment[R].ASME GT 2012-69891.
    [8]周新海,朱方元.求解叶栅跨音速流动反问题的有限体积方法[J].工程热物理学报,1985,6(4):331-335.
    [9]杨策,老大中,蒋滋康.求解跨声速压气机叶栅粘性流动反问题的数值解[J].推进技术,1999,20(4):57-60.(YANG Ce,LAO Da-zhong,JIANG Zi-kang.Numerical Solution on Viscous Inverse Problem for Transonic Compressor Cascades[J].Journal of Propulsion Technology,1999,20(4):57-60.)
    [10]王正明,贾希诚.正反问题数值解法相结合三维叶片的优化设计[J].工程热物理学报,2000,21(5):567-569.
    [11]Wang Z M,Cai R X.A Three-Dimensional Inverse Method Using Navier-Stokes Equation for Turbomachinery Blading[J].Inverse Problems in Engineering,2000,8:529-551.
    [12]朱阳历.叶轮机械叶片全三维反问题优化设计方法研究[D].北京:中国科学院研究生院,2012.
    [13]杨金广.叶轮机械全三维粘性反方法设计技术研究[D].西安:西北工业大学,2013.
    [14]Ning F F.MAP:A CFD Package for Turbomachinery Flow Simulation and Aerodynamic Design Optimization[R].ASME GT 2014-26515
    [15]Jameson A,Schmidt W,Turkel E.Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[J].AIAA Journal,1981,1259(11):2004-4325.
    [16]Zhao R,Yan C,Li X L,et al.Improvement of Baldwin-Lomax Turbulence Model for Supersonic Complex Flows[J].Chinese Journal of Aeronautics,2013,26(3):529-534.
    [17]刘昭威,吴虎,唐晓毅.改进的反问题边界条件在叶轮机械中的应用[J].工程热物理学报,2015,36(10):1-5.
    [18]Suder K L.Experimental Investigation of the Flow Field in a Transonic,Axial Flow Compressor with Respect to the Development of Blockage and Loss[R].NASA-TM-107310,1996.
    [19]刘昭威,吴虎,唐晓毅.基于反问题设计方法的叶栅激波损失控制[J].推进技术,2014,35(6):766-773.(LIU Zhao-wei,WU Hu,TANG Xiao-yi.Shock Wave Loss Control of Cascades Using Inverse Method[J].Journal of Propulsion Technology,2014,35(6):766-773.)
    [20]刘昭威,吴虎,唐晓毅.跨声速轴流压气机转子反问题优化方法[J].推进技术,2015,36(9):1310-1316.(LIU Zhao-wei,WU Hu,TANG Xiao-yi.Optimization of Transonic Axial Compressor Rotor Using Improved Inverse Method[J].Journal of Propulsion Technology,2015,36(9):1310-1316.)
    [21]杨金广,吴虎.双方程k-ωSST湍流模型的显式耦合求解及其在叶轮机械中的应用[J].航空学报,2014,1:116-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700