木粉增强P34HB生物复合材料的制备及其结构性能表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Characterization of the P34HB Composite Reinforced by Wood Flour
  • 作者:安胜男 ; 马晓军 ; 朱礼智
  • 英文作者:An Shengnan;Ma Xiaojun;Zhu Lizhi;College of Packaging & Printing Engineering, Tianjin University of Science & Technology;
  • 关键词:P34HB ; 毛白杨木粉 ; 生物复合材料 ; 力学性能 ; 热性能
  • 英文关键词:P34HB;;Populus tomentosa wood flour;;biocomposite;;mechanical properties;;thermal performance
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:天津科技大学包装与印刷工程学院;
  • 出版日期:2019-03-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:天津市自然科学基金项目(18JCYBJC90100)
  • 语种:中文;
  • 页:LYKE201903014
  • 页数:9
  • CN:03
  • ISSN:11-1908/S
  • 分类号:128-136
摘要
【目的】通过木粉纤维增强生物塑料聚3-羟基丁酸酯-co-4-羟基丁酸酯(P34HB),为生物复合材料的理论研究和生物可降解塑料的广泛应用提供科学依据和理论支持。【方法】以毛白杨木粉和P34HB为原料,采用共混热压法制备P34HB/木粉生物复合材料,基于电子扫描显微镜(SEM)、差示扫描量热法(DSC)、热重分析(TGA)、傅里叶红外光谱(FTIR)、动态热机械分析(DMA)和力学性能分析等手段对其结构和性能进行表征。【结果】随着木粉含量增加,生物复合材料的拉伸强度、断裂伸长率和弯曲强度先增加后减小,冲击强度逐渐下降,拉伸强度、弹性模量和杨氏模量分别增加89%、59%和103%,储能模量E′逐渐增加,tanδ峰值先下降后上升。生物复合材料的高频率模量大于低频率模量,动刚度比静刚度好。相比P34HB,生物复合材料的热分解区间变宽,热解速率变慢,热解剩余质量增加。【结论】随着木粉含量增加,P34HB分子链运动受阻,生物复合材料的储能模量和脆性增大;同时,木粉纤维的成核作用诱导P34HB形成结晶度高、层状结构发达的横晶层,木粉与P34HB之间界面结合力增强,力学性能和热稳定性明显提高。综合考虑,P34HB/木粉生物复合材料的最佳木粉加入量为50%。
        【Objective】 To improve the performance and reduce the costs, the poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P34 HB)was reinforced with wood flour. The optimum ratio of wood flour was determined by experimental research.【Method】 Using Chinese white poplar(Populus tomentosa)flours and P34 HB as raw materials, the biodegradability composites were prepared by hot pressing method. The structure and properties of the biodegradability composites were characterized by scanning electron microscopy(SEM), differential scanning calorimetry(DSC), thermal gravimetric analysis(TGA), Fourier transform infrared spectroscopy(FTIR),dynamic mechanical analysis(DMA)and mechanical property analysis.【Result】 Results show that the tensile strength, breaking elongation and flexural strength of the composite increase firstly and then decrease with the increasing of wood flour, but the impact strength decreases continuously. The tensile strength, elastic modulus and Young's modulus of the composites increase by 89%, 59% and 103%, respectively. The storage modulus E′ of the composites is continual increasing with the wood flour content, while the tanδ is decreasing initially and then increasing. The dynamic stiffness of the composite is better than static stiffness,for the higher frequency modulus is greater than the lowerone.Compared with P34 HB, the composites show the wider thermal decomposition range, the slower pyrolysis rate and the higher pyrolysis residual mass.【Conclusion】 With the increase of wood flour content, the structure of the composites is further dense. The storage modulus and brittleness of the composites increase because of hindering the movement of the molecular chain of bioplastics P34 HB by wood flour. At the same time, the transcrystallinity of P34 HB with high crystallinity and developed layer structure is developed bywood fibers as nucleating agents,strengthening the interfacial bonding strength between wood flour and P34 HB, and obviously improving the mechanical properties and thermal stability of the composites. It is also found that the optimum wood flour content of P34 HB/wood flour composite is 50%.
引文
侯人鸾,何春霞,薛娇,等.2013.麦秸秆粉/PP木塑复合材料紫外线加速老化性能.复合材料学报,30(5):86-93.(Hou R L,He C X,Xue J,et al.2013.UV accelerated aging properties of wheat straw/PP wood plastic composite.Acta Materiae Compositaesinica,30(5):86-93.[in Chinese])
    逯柳.2011.竹粉粒径对竹粉/PHBV 生物复合材料性能的影响.浙江林业科技,31(4):16 -20.(Lu L.2011.Effect of bamboo flour size on properties of bamboo/PHBV bio-composites.Journal of Zhejiang Forestry Science and Technology,31(4):16 -20.[in Chinese])
    吕闪闪,曹军,谭海彦,等.2015.木粉含量对木粉-淀粉/聚乳酸复合材料性能的影响.复合材料学报,32(2):347-354.(Lü S S,Cao J,Tan H Y,et al.2015.Effects of wood flour contents on performance of wood flour-starch/poly(lactic acid)composites.Acta Materiae Compositaesinica,32(2):347-354.[in Chinese])
    Anderson S,Zhang J W,Wolcott M P.2013.Effect of interfacial modifiers on mechanical and physical properties of the PHB composite with high wood flour content.Journal of Polymers and the Environment,21(3):631-639.
    Arrieta M P,Fourtunati E,Dominici F,et al.2015.Bionanocomposite films based on plasticized PLA-PHB/cellulosenanocrystal blends.Carbohydrate Polymers,121:265-275.
    Assouline E,Grigull E,Marom G,et al.2001.Morphology of atranscrystalline isotactic polypropylene under tensile stress studied with synchrotron microbeam X-ray diffraction.Journal of Polymer Science Part B:Polymer Physics,39(17):2016-2021.
    Berthet M A,Angellier-Coussy H,Chea V,et al.2015.Sustainable food packaging:valorising wheat straw fibers for tuning PHBV-based composites properties.Composites Part A:Applied Science and Manufacturing,72:139-147.
    Folkes M J,Wong W K.1987.Determination on interfacial shear strength in fiber reinforced thermoplastic composites.Polymer,28(8):1309-1314.
    Han L J,Han C Y.2012.Preparation and characterization of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/silica nanocomposites.Polymer Engineering and Science,52(2):250-258.
    Hosseinaei O,Wang S Q.2012.Effects of hemicellulose extraction on properties of wood flour and wood-plastic composites.Composites:Part A,43(4):686-694.
    Jayaraman K,Bhattacharyya D.2004.Mechanical performance of woodfibre-waste plastic composite materials.Resources Conservation and Recycling,41(4):307-319.
    Kordkheili H Y,Hiziroglu S,Farsi M.2012.Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber.Materials and Design,33:395-398.
    Nair K C M,Thomas S,Groeninckx G.2001.Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibers.Composites Science and Technology,61(16):2519-2529.
    Nourbakhsh A,Hosseinzadeh A,Basiji F.2011.Effects of filler content and compatibilizing agents on mechanical behavior of the particle-reinforced composites.Journal of Polymers and the Environment,19(4):908-911.
    Oksman K,Lindberg H.1998.Influence of thermoplastic elastomers on adhesion in polyethelene-wood flour composites.Journal of Applied Polymer Science,68(11):1845-1855.
    Padermshoke A,Katsumoto Y,Sato H,et al.2004.Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy.Polymer,45(19):6547-6554.
    Singh S,Mohanty A K,Sugie T,et al.2008.Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate(PHBV)bioplastic.Composites Part A:Applied Science and Manufacturing,39(5):875-886.
    Torres-Telloa E V,Robledo-Ortízb J R,González-Garcíab Y,et al.2017.Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrateorpoly(hydroxybutyrate-co-hydroxyvalerate).Industrial Crops and Products,99:117-125.
    Xie Y P,Kohls D,Noda I,et al.2009.Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)nanocomposites with optimal mechanical properties.Polymer,50(19):4656-4670.
    Zhang H L.2014.Effect of a novel coupling agent,alkyl ketene dimer,on the mechanical properties of wood-plastic composites.Materials and Design,59:130-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700