不同植筋方案纵连板轨道砂浆层抗剪性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shear Behavior of Mortar Layer in Continuous Slab Track with Different Arrangement Schemes of Embedded Steel Bars
  • 作者:钟阳龙 ; 高亮 ; 侯博文
  • 英文作者:ZHONG Yanglong;GAO Liang;HOU Bowen;School of Civil Engineering,Beijing Jiaotong University;Beijing Key Laboratory of Track Engineering;
  • 关键词:铁路轨道 ; 植筋 ; 抗剪强度 ; 温度 ; 基于表面的内聚力模型
  • 英文关键词:railroad track;;embedded steel bar;;shear strength;;temperature;;surface based cohesive zone model(SCZM)
  • 中文刊名:XNJT
  • 英文刊名:Journal of Southwest Jiaotong University
  • 机构:北京交通大学土木建筑工程学院;轨道工程北京市重点实验室;
  • 出版日期:2017-09-27 21:09
  • 出版单位:西南交通大学学报
  • 年:2018
  • 期:v.53;No.239
  • 基金:国家自然科学基金资助项目(51578056);; 中国铁路总公司科技研究开发计划重点资助项目(2015G001-L,2015G001-B-1);; 中央高校基本科研业务费专项资金资助项目(2016JBM037)
  • 语种:中文;
  • 页:XNJT201801005
  • 页数:9
  • CN:01
  • ISSN:51-1277/U
  • 分类号:42-49+67
摘要
为研究不同温度条件下的合理植筋方案,采用基于表面的内聚力模型模拟轨道板与砂浆层界面剪切破坏过程中层间黏结-脱黏-接触的复杂相互作用关系,考虑剪力筋的非线性约束特性,建立了纵连板式轨道三维有限元模型,并结合既有的推板试验结果对模型合理性进行验证,细致分析不同植筋方案下轨道板与砂浆层间的抗剪性能.研究结果表明:植筋可以明显提高轨道层间抗剪性能;层间开裂时对应的轨道温升幅度可由无植筋时的10.5℃提高到30℃;温升幅度小于20℃时,采用16+8+8植筋方案,温升幅度在20~30℃之间,采用16+16+16+10+8植筋方案,超过30℃时,需辅助其他限位措施.
        In order to study the reasonable arrangement scheme of embedded steel bars under different temperatures,a three-dimensional finite element model of continuous slab track was established.In the model,a surface based cohesive zone model(SCZM) was introduced and utilized to simulate the complex interaction between track slab and mortar layer in the process of shear failure,which was bonding-debonding-contact.Nonlinear constraint characteristic of shearing steel bars were also considered.Based on the model validated by the results of longitudinal shear test of slab track,shear behaviors of CA mortar layer were analyzed particularly.The results show that embedded steel bars can significantly improve interlayer shear performance of slab track.The increasing extent of temperature when interlayer is cracking increases from 10.5℃ to 30℃.It is suggested that the 16+8+8 arrangement scheme of embedded steel bars could be used when the temperature rise less than 20℃,and 16+16+16+10+8 is also proposed when the temperature rise at 20~30℃,Over 30℃,other measures should be used.
引文
[1]王平,徐浩,陈嵘,等.路基上CRTSⅡ型板式轨道裂纹影响分析[J].西南交通大学学报,2012,47(6):929-934.WANG Ping,XU Hao,CHEN Rong,et al.Effects analysis of cracking of CRTSⅡslab track on subgrade[J].Journal of Southwest Jiaotong University,2012,47(6):929-934.
    [2]GAUTIER P E.Slab track:review of existing systems and optimization potentials including very high speed[J].Construction and Building Materials,2015,92:9-15.
    [3]谭社会.高温条件下CRTSⅡ型板式无砟轨道变形整治措施研究[J].铁道建筑,2016(5):23-27.TAN Shehui.Study on deformation treatment measures for CRTSⅡslab-type ballastless track in high temperature condition[J].Railway Engineering,2016(5):23-27.
    [4]廖红建,朱庆女,昝月稳,等.基于探地雷达的高铁无砟轨道结构层病害检测[J].西南交通大学学报,2016,51(1):8-13.LIAO Hongjian,ZHU Qingnü,ZAN Yuewen,et al.Detection of ballastless track diseases in high-speed railway based on ground penetrating radar[J].Journal of Southwest Jiaotong University,2016,51(1):8-13.
    [5]曹世豪,杨荣山,刘学毅,等.无砟轨道层间裂纹内动水压力特性分析[J].西南交通大学学报,2016,51(1):36-42.CAO Shihao,YANG Rongshan,LIU Xueyi,et al.Analysis of water pressure in ballastless track crack[J].Journal of Southwest Jiaotong University,2016,51(1):36-42.
    [6]苗雨.CRTSⅡ型板式无砟轨道高温胀板病害研究与整治[J].科技创新与应用,2014(34):37-39.MIAO Yu.Study and treatment of upheaval of CRTS II type ballastless track[J].Technology Innovation and Application,2014(34):37-39.
    [7]倪跃峰,任娟娟,赵华卫.CRTSⅡ型板式无砟轨道抬板维修时轨道板锚固方案研究[J].铁道建筑,2016(2):132-135.NI Yuefeng,REN Juanjuan,ZHAO Huawei.Study on anchoring scheme of lifted track slab in repairing of CRTSⅡslab type ballastless track[J].Railway Engineering,2016(2):132-135.
    [8]王继军.板式无砟轨道锚固销钉限位技术的试验研究[J].铁道建筑,2010(6):122-125.WANG Jijun.Test research on anchoring technology of slab track[J].Railway Engineering,2010(6):122-125.
    [9]孙立.CRTSⅡ型板式无砟轨道结构温度变形控制措施研究[R].武汉:中铁第四勘察设计院集团有限公司,2015.
    [10]刘钰.CRTSⅡ型板式轨道早期温度场特征及其影响研究[D].成都:西南交通大学,2013.
    [11]DAI G,SU M.Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure[J].Archives of Civil and Mechanical Engineering,2016,16(3):485-493.
    [12]RAMAMURTHI M,LEE J S,YANG S H,et al.Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model[J].International Journal of Precision Engineering and Manufacturing,2013,14(10):1755-1765.
    [13]LIU G,BAO H,TANG K.Damage prediction in notched fiber-reinforced composite laminates[J].Composite Interfaces,2016,24(3):279-290.
    [14]ZHANG M,ZUO C,SUN B,et al.Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study[J].Composite Structure,2016,140:180-191.
    [15]LUO C,LUA J,DESJARDIN P E.Thermomechanical damage modeling of polymer matrix sandwich composites in fire[J].Composites Part A Applied Science and Manufacturing,2012,43(5):814-821.
    [16]赵磊.高速铁路无砟轨道空间精细化分析方法及其应用研究[D].北京:北京交通大学,2015.
    [17]戴公连,粟淼.剪切荷载下板式无砟轨道界面黏结破坏机理[J].华中科技大学学报:自然科学版,2016,44(1):16-21.DAI Gonglian,SU Miao.Mechanism of interfacial bond failure of slab ballastless track under shear loading[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2016,44(1):16-21.
    [18]ZHU S,CAI C.Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads[J].International Journal of Non-linear Mechanics,2014,58:222-232.
    [19]HARPER P W,HALLETT S R.Cohesive zone length in numerical simulations of composite delamination[J].Engineering Fracture Mechanics,2008,75(16):4774-4792.
    [20]王明昃,蔡成标,朱胜阳,等.基于黏聚力模型的双块式无砟轨道混凝土层间黏结性能试验与分析[J].铁道学报,2016,38(11):88-94.WANG Mingze,CAI Chengbiao,ZHU Shengyang,et al.Experimental investigation on adhesive performance of concrete interface of double-block ballastless track based on cohesive zone model[J].Journal of the China Railway Society,2016,38(11):88-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700