考虑结构面黏聚力损伤变化的洞室块体稳定分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability Analysis of Block in Cavity Considering Damage Variation of Cohesive Force on Structural Surface
  • 作者:骆健 ; 章杨松 ; 李晓昭
  • 英文作者:LUO Jian;ZHANG Yangsong;LI Xiaozhao;School of Science,Nanjing University of Science and Technology;School of Earth Sciences and Engineering,Nanjing University;
  • 关键词:隧道 ; 黏聚力模型 ; 胶结结构面 ; 抗拉强度 ; 黏聚强度 ; 块体稳定性
  • 英文关键词:tunnel;;cohesive force model;;cemented structural surface;;tensile strength;;cohesive strength;;block stability
  • 中文刊名:JSSD
  • 英文刊名:Tunnel Construction
  • 机构:南京理工大学理学院;南京大学地球科学与工程学院;
  • 出版日期:2019-01-04 16:44
  • 出版单位:隧道建设(中英文)
  • 年:2018
  • 期:v.38;No.221
  • 基金:国防科技重点项目(科工二司[2015]297号);; 国家重点基础研究发展计划(973计划)(2013CB036001)
  • 语种:中文;
  • 页:JSSD201812009
  • 页数:8
  • CN:12
  • ISSN:41-1448/U
  • 分类号:63-70
摘要
为研究隧道开挖过程中临空面块体的稳定情况,进一步探究在其结构面具有胶结强度情况下块体的稳定性,运用黏聚力模型模拟具有填充和胶结的结构面的抗拉强度和黏聚强度,以及相应的滑移和脱开行为。选取甘肃北山某典型花岗岩研究区域搜索出的块体,以及获得的结构面参数区间,分4种方案研究块体的稳定性,同时考虑初始地应力、开挖诱导的二次地应力等因素的影响。方案1赋予抗拉强度和黏聚强度一个很小的数值,从而可以分析块体仅受结构面摩擦应力影响下的稳定性;方案2、3、4分别考虑不同位置的块体可能的失稳情况,通过调整不同块体结构面的抗拉强度和黏聚强度,分析块体稳定性。分析结果表明:黏聚力模型能较好地模拟具有填充和胶结的结构面的抗拉强度和黏聚强度,并且能模拟结构面的滑移和脱开行为,可作为块体稳定性分析计算的工具;此外,也为模拟胶结结构面损伤随时间的渐进性发展提供一个新思路。
        The stability of the block of free face during tunnel excavation and the stability of the block under the condition of structural surface with cohesive strength are very important. Hence,the cohesive force model is used to simulate the tensile strength and cohesive strength of the filled and cemented structural surfaces and the corresponding sliding and detachment behaviors. The block selected from a typical granite area in Beishan,Gansu,as well as the structural surface parameter interval obtained are used to study the stability of block by 4 schemes; meanwhile,the influences of initial ground stress and secondary ground stress induced by excavation are considered. In scheme 1,the tensile strength and cohesion strength are given by a small value so as to analyze the stability of the block under the influence of friction stress on the structural surface. In the other three schemes,the possible instability of block at different positions is considered respectively,and the stability of the block is analyzed by adjusting the tensile strength and cohesive strength of different structural surface of block. The analytical results show that: the cohesive force model can simulate the tensile strength and cohesive strength of the filled and cemented structure surfaces commendably,and can simulate the sliding and detachment behavior of the structure surface as well,which can be used as a tool for block stability analysis and calculation; in addition,the results can provide a new idea to simulate the progressive development of cemented structural surface damage with time.
引文
[1]石根华.岩体稳定分析的几何方法[J].中国科学,1981(4):105.SHI Genhua. Geometric method of rock mass stability analysis[J]. Science China,1981(4):105.
    [2] WARBURTON P M. Vector stability analysis of an arbitrary polyhedral rock block with any number of free faces[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1981,18(5):415.
    [3]朱焕春,RICHARD Brummer,PATRICK Andrieux.节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444.ZHU Huanchun,RICHARD Brummer,PATRICK Andrieux.Numerical methods and application for jointed rock mass,part1:Approaches and discussions[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3444.
    [4]黄达,黄润秋,王家祥.开挖卸荷条件下大型地下硐室块体稳定性的对比分析[J].岩石力学与工程学报,2007,26(增刊2):4115.HUANG Da,HUANG Runqiu,WANG Jiaxiang. Contrastive analysis of stability of block in large underground caverns under conditions of excavation and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2):4115.
    [5]张雨霆,肖明,丁秀丽,等.复杂岩石块体识别的单元重构-聚合方法[J].岩石力学与工程学报,2012,31(3):507.ZHANG Yuting, XIAO Ming, DING Xiuli, et al.Identification method of complex rock blocks using element reconstruction and aggregation technique[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):507.
    [6]张雨霆,丁秀丽,卢波.基于数值分析的岩石块体稳定性评价一般性方法[J].岩石力学与工程学报,2017,36(1):78.ZHANG Yuting,DING Xiuli,LU Bo. General method for stability evaluation of rock blocks based on numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(1):78.
    [7] WU Wei,ZHU Hehua,LIN Jeen-Shang,et al. Tunnel stability assessment by 3D DDA-key block analysis[J]. Tunnelling and Underground Space Technology,2018,71:210.
    [8] MI Y,CRISFIELD M A,DAVIES G A O. Progressive delamination using interface elements[J]. Journal of Composite Materials,1998,32(14):1246.
    [9] LI Jia,QIU Zhengsong,SONG Dingding,et al. Numerical simulation of 3D fracture propagation in wellbore strengthening conditions[J]. Journal of Petroleum Science and Engineering,2017,156:258.
    [10] BENZEGGAGH M L,KENANE M. Measurement of mixedmode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J].Composites Science and Technology,1996,56(4):439.
    [11] CAMANHO P P,DAVILA C G,MOURA M F D. Numericalsimulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials,2003,37(16):1415.
    [12]赵宏刚,王驹,刘月妙,等.处置库硐室开挖稳定性分析:甘肃北山为例[C]//第2届废物地下处置学术研讨会论文集.北京:原子能出版社,2008:295.ZHAO Honggang,WANG Ju,LIU Yuemiao,et al. The tunnel excavation stability analysis for the high level radioactive waste repository:Beishan area as an example[C]//Proceedings of the Second Symposium on Underground Waste Disposal. Beijing:Atomic Energy Press,2008:295.
    [13]张昱辉,郭吉平,孔凡林.基于块体理论的隧道围岩稳定性分析[J].隧道建设,2015,35(1):41.ZHANG Yuhui,GUO Jiping,KONG Fanlin. Analysis of stability of surrounding rock of tunnel based on block theory[J]. Tunnel Construction,2015,35(1):41.
    [14]工程岩体分级标准:GB/T 50218—2014[S].北京:中国计划出版社,2014.Standard for engineering classification of rock mass:GB/T50218-2014[S]. Beijing:China Planning Press,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700