计及碳交易成本的多能源站综合能源系统规划
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal planning of multi-energy stations considering Carbon-trading cost
  • 作者:白宏坤 ; 尹硕 ; 李虎军 ; 杨萌 ; 王甫月 ; 刘皓明
  • 英文作者:BAI Hong-kun;YIN Shuo;LI Hu-jun;YANG Meng;WANG Fu-yue;LIU Hao-ming;State Grid Economic and Technological Research Institute of Henan Province;College of Energy and Electrical Engineering, Hohai University;
  • 关键词:综合能源系统 ; 规划 ; 碳交易 ; 碳排放 ; 供热网络
  • 英文关键词:integrated energy system;;planning;;carbon trading;;carbon emission;;heating transmission network
  • 中文刊名:CSDL
  • 英文刊名:Journal of Electric Power Science and Technology
  • 机构:国网河南省电力公司经济技术研究院;河海大学能源与电气学院;
  • 出版日期:2019-03-28
  • 出版单位:电力科学与技术学报
  • 年:2019
  • 期:v.34;No.124
  • 基金:国家自然科学基金(U1509218)
  • 语种:中文;
  • 页:CSDL201901002
  • 页数:9
  • CN:01
  • ISSN:43-1475/TM
  • 分类号:13-21
摘要
冷、热、电等能源行业分开规划、独立运行的传统模式制约着电力系统综合能效的提高。为推行碳排放交易政策,改变传统单一经济目标主导的规划模式,将碳交易与综合能源系统规划相结合,提出一种计及碳交易成本的多能源站综合能源系统规划方法。首先,建立了包含碳排放量计算、碳排放初始配额和碳交易成本的数学模型。其次,在分析综合能源系统投资运行成本计算模型的基础上,以碳交易成本和系统投资运行成本最小为目标,计及电、冷、热多种能源约束和热网损耗约束,构建综合考虑经济性及低碳性的规划模型。算例仿真结果表明,地理距离较近的多能源站通过热网可实现热能互供互济,且在综合能源系统规划中计及碳交易成本能有效降低系统碳排放,提高系统整体能效,具有可观的经济效益。
        The conventional energy industries including cold, heat, and electricity are relatively enclosed, and the separate planning and operation mode restricts the enhancement of the comprehensive energy efficiency. In order to implement the carbon emission trading policy and change the traditional planning mode dominated by single economic objective, a multi-energy station integrated energy system planning method considering the cost of carbon trading is proposed by combining carbon trading with integrated energy system planning. Firstly, the initial quota and cost of carbon emission for an integrated energy system are discussed. Then, the calculation model of investment and operation costs is analyzed. For the purpose of minimizing the comprehensive cost of carbon trading and the investment and operation costs of integrated energy system, a planning model is established to realize the performance of low-carbon and economy with the constraints of multi-energy equipment and energy loss of heat pipelines. Finally, a practical case is studied. It is shown that the heat network can be utilized for the inter-connection of several energy stations within a short distance,and the proposed planning method leads to significant benefits in reducing energy costs and carbon emissions.
引文
[1]杨健,曹培,郭创新.智能电网低碳效益展望[J].电力科学与技术学报,2010,25(3):54-60.YANG Jian,CAO Pei,GUO Chuang-xin.Expectation of low-carbon benefits on smart grid[J].Journal of Electric Power Science and Technology,2010,25(3):54-60.
    [2]王泽森,石岩,唐艳梅,等.考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J/OL].中国电机工程学报,2018(网络版):1-14.WANG Ze-sen,SHI Yan,TANG Yan-mei,et al.Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism [J/OL].Proceedings of the CSEE,2018 (Early Access):1-14.
    [3]韩宇,彭克,王敬华,等.多能协同综合能源系统协调控制关键技术研究现状与展望[J].电力建设,2018,39(12):81-87.HAN Yu,PENG Ke,WANG Jing-hua,et al.Research status and prospect of key technologies for coordinated control of multi-energy synergic integrated energy systems [J].Electric Power Construction,2018,39(12):81-87.
    [4]EHSAN Ali,YANG Qiang.Scenario-based investment planning of isolated multi-energy microgrids considering electricity,heating and cooling demand [J].Applied Energy,2019,235:1 277-1 288.
    [5]管霖,陈鹏,唐宗顺,等.考虑冷热电存储的区域综合能源站优化设计方法[J].电网技术,2016,40(10):2 934-2 943.GUAN Lin,CHEN Peng,TANG Zong-shun,et al.Integrated energy station design considering cold and heat storage [J].Power System Technology,2016,40(10):2 934-2 943.
    [6]吴聪,唐巍,白牧可,等.基于能源路由器的用户侧能源互联网规划[J].电力系统自动化,2017,41(4):20-28.WU Cong,TANG Wei,BAI Mu-ke,et al.Energy router based planning of energy internet at user side [J].Automation of Electric Power Systems,2017,41(4):20-28.
    [7]黄武靖,张宁,董瑞彪,等.多能源网络与能量枢纽联合规划方法[J].中国电机工程学报,2018,38(18):5 425-5 437.HUANG Wu-jing,ZHANG Ning,DONG Rui-biao,et al.Coordinated planning of multiple energy networks and energy hubs [J].Proceedings of the CSEE,2018,38(18):5 425-5 437.
    [8]孙凯华,韩冬,严正,等.气电热联供网络规划与运行联合优化[J].电力建设,2016,37(4):22-28.SUN Kai-hua,HAN Dong,YAN Zheng,et al.Planning-operation co-optimization of gas-heat-electricity co-generation network [J].Electric Power Construction,2016,37(4):22-28.
    [9]王珺,顾伟,陆帅,等.结合热网模型的多区域综合能源系统协同规划[J].电力系统自动化,2016,40(15):17-24.WANG Jun,GU Wei,LU Shuai,et al.coordinated planning of multi-district integrated energy system combining heating network model [J].Automation of Electric Power Systems,2016,40(15):17-24.
    [10]黄国日,刘伟佳,文福拴,等.具有电转气装置的电气混联综合能源系统的协同规划[J].电力建设,2016,37(9):1-13.HUANG Guo-ri,LIU Wei-jia,WEN Fu-shuan,et al.Collaborative planning of integrated electricity and natural gas energy systems with power-to-gas stations [J].Electric Power Construction,2016,37(9):1-13.
    [11]PAZOUKI S,MOHSENZADEH A,ARDALAN S,et al.Optimal place,size,and operation of combined heat and power in multi carrier energy networks considering network reliability,power loss,and voltage profile [J].IET Generation,Transmission & Distribution,2016,10(7):1 615-1 621.
    [12]CESENA E A M,MANCARELLA P.Energy systems integration in smart districts:robust optimization of multi-energy flows in integrated electricity,heat and gas networks [J].IEEE Transactions on Smart Grid,2018,10(1):1 122-1 131.
    [13]MOHMMAD A,ZAHED B.Optimal design and operation of district heating and cooling networks with CCHP systems in a residential complex [J].Energy and Buildings,2016,110:135-148.
    [14]CAO J,CROZIER C,MCCULLOCH M,et al.Optimal design and operation of a low carbon community based multi-energy systems considering EV integration [J].IEEE Transactions on Sustainable Energy (Early Access),2018.
    [15]卫志农,张思德,孙国强,等.基于碳交易机制的电—气互联综合能源系统低碳经济运行[J].电力系统自动化,2016,40(15):9-16.WEI Zhi-nong,ZHANG Si-de,SUN Guo-qiang,et al.Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system [J].Automation of Electric Power Systems,2016,40(15):9-16.
    [16]CHENG Yao-hua,ZHANG Ning,WANG Yi,et al.Modeling carbon emission flow in multiple energy systems [J].IEEE Transactions on Smart Grid(Early Access)2018.
    [17]KUO M,Lu S,TSOU M.Considering carbon emissions in economic dispatch planning for isolated power systems:a case study of the Taiwan power system [J].IEEE Transactions on Industry Applications,2018,54(2):987-997.
    [18]IPCC.2006 IPCC guidelines for national greenhouse gas inventories [EB/OL].https://www.ipcc-nggip.iges.or.jp/public/2006gl/chinese/.
    [19]GB/T 32150-2015 工业企业温室气体排放核算和报告通则[S].
    [20]国家发展和改革委员会.2006至2017年度减排项目中国区域电网的基准线排放因子[EB/OL].http://www.tanjiaoyi.com/article-25420-1.html.
    [21]MASHAYEKH S,STADLER M,CARDOSO G,et al.Security-constrained design of isolated multi-energy micro-grids [J].IEEE Transactions on Power Systems,2018,33(3):2 452-2 462.
    [22]胡永飞,张海滨.外购热力导致的间接温室气体排放量计算方法[J].中外能源,2014,19(3):96-100.HU Yong-fei,ZHANG Hai-bin.A study into calculating indirect greenhouse gas emissions resulting from heat purchase [J].Sino-global Energy,2014,19(3):96-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700