葵花8号卫星在暴雨对流云团监测中的应用分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application Analysis of Himawari-8 in Monitoring Heavy Rain Convective Clouds
  • 作者:张夕迪 ; 孙军
  • 英文作者:ZHANG Xidi;SUN Jun;National Meteorological Centre;
  • 关键词:葵花8号卫星(H8卫星) ; 暴雨对流云团监测 ; 黑体亮度温度
  • 英文关键词:Himawari-8(H8);;convective cloud monitoring of heavy rain;;temperature of brightness blackbody(TBB)
  • 中文刊名:QXXX
  • 英文刊名:Meteorological Monthly
  • 机构:国家气象中心;
  • 出版日期:2018-10-21
  • 出版单位:气象
  • 年:2018
  • 期:v.44;No.526
  • 基金:国家气象中心青年基金(Q201606);; 公益性行业(气象)科研专项(GYIIY201306011)共同资助
  • 语种:中文;
  • 页:QXXX201810001
  • 页数:10
  • CN:10
  • ISSN:11-2282/P
  • 分类号:3-12
摘要
高时空分辨率的葵花8号卫星(简称H8卫星)2016年在我国得到应用,而该年是我国暴雨过程频繁、极端性强的一年,H8卫星到底在暴雨对流云团监测方面有何优势也是预报员所关心的。目前的业务中H8、FY-2卫星和雷达资料到达业务平台的平均延迟时间分别为15、35、6 min左右。本文利用H8卫星红外云图结合地面降水,在2016年汛期27次暴雨过程中每个过程选定一个主要的目标对流云团分析其初生情况,并与FY-2卫星和雷达探测的情况进行对比,结果表明:H8和FY-2卫星在同时刻云顶黑体亮温(TBB)观测数值上差别不大,时间变化趋势也基本一致,但H8卫星由于高频次观测的优势对暴雨对流强弱的变化刻画得更加细致,在监测暴雨对流云团方面具有明显时间上的优势,即H8卫星较FY-2卫星平均提前23 min发现对流云团,较雷达平均提前达33 min。通过结合地面小时和10 min降水量对2016年华北"7·20"极端暴雨过程进行分析,发现TBB与地面降水量之间有很好的反相关关系,同时降水量的变化幅度明显大于TBB的变化;当TBB峰值向低温一侧移动时,与之对应的地面降水量级也增大,降水逐渐转为冷云降水为主。
        High resolution data of Himawari-8(H8 for short) have been used in China since 2016, and forecasters have been concerning for its superiority in monitoring convective clouds because heavy and extreme rain processes occurred frequently in 2016. In the current forecasting operation, the delay time of acquiring H8, FY-2 and radar data are 15 min, 35 min and 6 min, respectively. In this article, the H8 infrared data and surface precipitation are used to analyze the initiation of each target convective clouds of 27 heavy rain processes in the 2016 flood season. By comparing with FY-2 satellite and radar observations, we conclude that the observation data of H8 and FY-2 at the same moment have little difference, and their time variation trends are almost the same. However, H8 depicts convection strength more detailedly due to its higher resolution, and it has obvious superiority in monitoring heavy rain convective clouds. It can find the initiation convective clouds 23 min earlier than FY-2 averagely, and 33 min earlier than radar. Combined with hourly and 10 min precipitation data, the 20 July 2016 extreme heavy rain event in North China is analyzed in detail. It is found that there is a remarkable negative correlation between temperature of brightness blackbody(TBB) and surface precipitation, and the amplitude of precipitation varies much larger than TBB. When the peak of TBB moves towards the colder side, the corresponding precipitation magnitude increases, and the type of precipitation turns to cold-cloud precipitation gradually.
引文
方宗义,覃丹宇,2006.暴雨云团的卫星监测和研究进展[J].应用气象学报,17(5):583-593.
    李五生,王洪庆,王玉,等,2014.基于卫星资料的对流初生预报及效果评估[J].北京大学学报(自然科学版),50(5):819-824.
    刘健,蒋建莹,2013. FY-2C高时间分辨率扫描数据在强对流云团监测中的应用研究[J].大气科学,37(4):873-880.
    刘京华,王彬,韩雷,等,2012.京津地区一次强对流天气的初生预警技术研究[J].北京大学学报(自然科学版),48(1):42-46.
    卢乃锰,吴蓉璋,1997.强对流降水云团的云图特征分析[J].应用气象学报,8(3):269-275.
    潘留杰,张宏芳,侯建忠,等,2015.弱天气系统强迫下黄土高原强对流云的初生及演变[J].高原气象,34(4):982-990.
    覃丹宇,方宗义,2014.利用静止气象卫星监测初生对流的研究进展[J].气象,40(1):7-17.
    覃丹宇,李博,2012. FY-4对流初生产品算法理论基本文档[Z].国家卫星气象中心,技术文档:1-21.
    汪柏阳,覃丹宇,刘传才,2015.利用FY-2F数据检测快速发展对流[J].遥感学报,19(5):836-843.
    徐慧,2013.基于Box-averaged方法的CI预警方法研究[D].青岛:中国海洋大学.
    许锐,2009.基于卫星数据的对流初生自动识别研究[D].青岛:中国海洋大学.
    郑永光,林隐静,朱文剑,等,2013.强对流天气综合监测业务系统建设[J].气象,39(2):234-240.
    Ai Y F,Li W B,Meng Z Y,et al,2016. Life cycle characteristics of MCSs in Middle East China tracked by geostationary satellite and precipitation estimates[J]. Mon Wea Rev,144(7):2517-2530.
    Dye J E,Winn W P,Jones J J,et al, 1989. The electrification of New Mexico thunderstorms:1. Relationship between precipitation development and the onset of electrification[J]. J Geophys Res, 94(D6):8643-8656.
    Feng Z,Dong X Q,Xi B K,et al,2012. Life cycle of midlatitude deep convective systems in a lagrangian framework[J]. J Geophys Res,117(D23):D23201.
    Goyens C,Lauwaet D, Schroder M,et al.2012. Tracking mesoscale convective systems in the Sahel:relation between cloud parameters and precipitation[J]. Int J Climatol,32(12):1921-1934.
    Gremillion M S, Orville R E, 1999. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy space center,Florida:a study of lightning initiation signatures as indicated by the WSR-88D[J]. Wea Forecasting,14(5):640-649.
    Houze R A, 2004. Mesoscale convective systems[J]. Rev Geophys,42(4):RG4003.
    Inoue T, Ueda H,Inoue T,2006. Cloud properties over the bay ofBengal derived from NOAA-9 split window data and the TRMM PR product[J]. SOLA,2:41-44.
    Kolios S,Feidas H,2013. An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part I:system description[J]. Meteor Appl,20(3):287-295.
    Laing A G,Fritsch J M, 1993a. Mesoscale convective complexes over the Indian monsoon region[J]. J Climate, 6(5):911-919.
    Laing A G, Fritsch J M, 1993b. Mesoscale convective complexes in Africa[J]. Mon Wea Rev, 121(8):2254-2263.
    Machado L A T,Rossow W B,Guedes R L,et al.1998. Life cycle variations of mesoscale convective systems over the Americas[J]. Mon Wea Rev, 126(6):1630-1654.
    Maddox R A, 1980. Mesoscale convective complexes[J]. Bull Amer Meteor Soc,61(11):1374-1387.
    Mapes B,IIouze Jr R A, 1993. An integrated view of the 1987 Australin monsoon and its mesoscale convective systems.Ⅱ:vertical structure[J]. Quart J Roy Meteor Soc, 119(512):733-754.
    Mecikalski J R,Bedka K M,2006. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery[J]. Mon Wea Rev,134(1):49-78.
    Mecikalski J R,Bedka K M,Paech S J,et al,2008. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation[J]. Mon Wea Rev,136(12):4899-4914.
    Meng Z Y,Yan D C,Zhang Y J,2013. General features of squall lines in East China[J]. Mon Wea Rev,141(5):1629-1647.
    Migliorini S,Dixon M,Bannister R,et al.2011. Ensemble prediction for nowcasting with a convection-permitting model-I:description of the system and the impact of radar-derived surface precipitation rates[J]. Tellus A,63(3):468-496.
    Miller D,Fritsch J M, 1990. Mesoscale convective complexes in the western pacific region[J]. Mon Wea Rev,119(12):2978-2992.
    Roberts R D, Rutledge S,2003. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data[J]. Wea Forecasting,18(4):562-584.
    Sieglaff J M,Cronce L M,Feltz W F,et al,2011. Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends[J]. J Appl Meteor Climatol,50(1):110-126.
    Vila D A, Machado L A T, Laurent II,et al, 2008. Forecast and tracking the evolution of cloud clusters(ForTraCC)using satellite infrared imagery:methodology and validation[J]. Wea Forecasting, 23(2):233-245.
    Xu W X,2013. Precipitation and convective characteristics of summer deep convection over east Asia observed by TRMM[J]. Mon Wea Rev,141(5):1577-1592.
    Xu W X,Zipser E J,2011. Diurnal variations of precipitation, deep convection,and lightning over and east of the Eastern Tibetan plateau[J]. J Climate,24(2):448-465.
    Zheng Y G,Chen J,Zhu P J,2008. Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer[J]. Chin Sci Bull,53(10):1574-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700