雨季青藏高原东部MCC移动特征及其热动力原因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Moving Characteristics and Thermodynamic Causes of MCC over Eastern Qinghai-Tibetan Plateau in Rainy Season
  • 作者:吕艺影 ; 银燕 ; 陈景华 ; 况祥 ; 郝囝 ; 张昕
  • 英文作者:Lü Yiying;YIN Yan;CHEN Jinghua;KUANG Xiang;HAO Jian;ZHANG Xin;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster (CIC-FEMD)/Key Laboratory for Aerosol-cloud-precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (PAEKL);
  • 关键词:青藏高原 ; MCC ; 对流东移
  • 英文关键词:Qinghai-Tibetan Plateau;;MCC;;convection eastward
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室;高原大气与环境四川省重点实验室;
  • 出版日期:2018-12-28
  • 出版单位:高原气象
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金项目(91337101,41705118);; 江苏高校优势学科建设工程项目(PAPD);; 高原大气与环境四川省重点实验室开放课题(PAEKL-2018-C2);; 江苏省高等学校自然科学研究项目(17KJB170010)
  • 语种:中文;
  • 页:GYQX201806006
  • 页数:17
  • CN:06
  • ISSN:62-1061/P
  • 分类号:65-81
摘要
利用2012-2016年5-9月风云二号静止卫星资料结合ERA_Interim再分析资料,对雨季青藏高原东部中尺度对流复合体MCC的移动特征进行了对比分析。结果发现,根据高原MCC的移动特征可以将其分为三类:东北移型NE-MCC、东移型NE-MCC和局地生消型L-MCC。NE-MCC一般是高原上生成的,而E-MCC和L-MCC生成源地在高原南坡。对流强的MCC系统通常不能移出高原,而对流强度中等、生命期较长的MCC系统东移特征更为明显,主要是由于强对流MCC一般位于高原南坡且生命周期短。与NE-MCC和E-MCC相比,L-MCC型云盖面积最小、云顶黑体亮温TBB最低、上下两层散度差最大,冰水含量IWC(ice water content)和液水含量LWC(liquid water content)最大,强烈的辐合上升气流使对流加强并形成正反馈机制; NE-MCC与E-MCC相比,生命期较长、系统所处位置相对湿度较低。500 h Pa高度上,NE-MCC的移动受气旋性环流中的西南气流影响,E-MCC受短波槽底部的西风气流影响,L-MCC位于局地气旋性环流中;三类MCC位于高温中心或高温梯度上,可能来源于夏季高原热源的贡献。低层辐合、高层辐散、低层正涡度、高层负涡度或正负涡度梯度的环境配置场有利于MCC的发生发展; MCC中心的垂直剖面上,辐合和辐散中心的散度梯度方向可以判断系统的移动趋势,地形阻挡作用使L-MCC缺乏向北的移动分量。
        Based on the TBB data from Fengyun-2 stationary meteorological satellite and the reanalysis data ERA_Interim from ECM WF from May to September during 2012-2016,we conducted a contrastive analysis on the moving characteristics of mesoscale convective complex(MCC)over Qinghai-Tibetan Plateau(QTP)in rainy season.The results showed that MCC over the QTP can be divided into three types according to its moving characteristics,which are MCC that move out of the QTP in northeast direction(NE-MCC)and in east direction(E-MCC)and decay locally over the QTP(L-MCC).NE-MCC are usually born in the middle of the QTP while E-MCC and L-MCC are in the southern slope of the QTP.Generally,MCC that can move out of the QTP are not that strong due to its location and lifespan,while MCC that with moderate convective intensity and longer lifespan shows obvious eastward or north-eastward moving feature.Compared with NE-MCC and E-MCC,L-MCC is with the smallest cloud cover,the strongest TBB,the highest IWC and LWC and the maximum divergence difference between two levels that can lead to intense updrafts to enhance the development of L-MCC and at the same time forming a positive feedback mechanism.Compared with E-MCC,NE-MCC have longer lifetime and located in the lower relative humidity place.At the height of 500 hPa,the movement of NE-MCC is affected by the southwest airflowfrom the cyclonic circulation while E-MCC is affected by the westerly air flowat the bottom of the shortwave trough and L-MCC is located in the cyclonic circulation.The three types of MCC are located at the high temperature center or nearby,which may be derived from the contribution of the summer plateau heat source.It is beneficial for the development of MCC if the environmental configuration field has been convergence and positive vorticity in the lowlevel coupled with divergence and negative vorticity or its gradient in the high level.The divergence gradient direction in the vertical section of the system center shows the movement trend of the system.The effect of topography prevents the L-MCC from moving north.
引文
Bao X H,Zhang F Q,2013.Evaluation of NCEP-CFSR,NCEP-NCAR,ERA-Interim,and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J].JClimate,26(1):206-214.DOI:10.1175/JCLI-D-12-00056.1.
    Chen J,Wu X,Yin Y,et al,2015.Characteristics of heat sources and clouds over Eastern China and the Tibetan Plateau in Boreal Summer[J].J Climate,28:7279-7296,8345-8358.DOI:10.1175/JCLI-D-14-00859.1.
    Chen J,Wu X,Yin Y,et al,2017.Characteristics of cloud systems over the Tibetan Plateau and East China during Boreal Summer[J].J Climate,30(9):3117-3137.DOI:10.1175/JCLI-D-16-0169.1.
    Flohn H,1968.Contribution to a meteorology of the Tibetan High lands[D].Atmos Sci Paper.Colorado State Univ:Fort Collins.
    Hu L,Deng D F,Xu X D,et al,2017.The regional differences of Tibetan convective systems in boreal summer[J].J Geophys Res Atmos,122:7289-7299.DOI:10.1002/2017JD026681.
    M addox R A,1980.M esoscale convective complexes[J].Bull Amer M eteor Soc,61:1374-1387.
    M addox R A,1981.The structure and life-cycle of midlatitude mesoscale convective complexes[J].Atmos Sci,336.
    Qie X S,Wu X K,Yuan T,et al,2014.Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian M onsoon Region Based on TRM M Data[J].J Climate,27:6612-6626.DOI:10.1175/JCLI-D-14-00076.1.
    Simmons A J,Uppala S M,Dee D,et al,2007.ERA-Interim:New ECM WF reanalysis products from 1989 onw ards[J].ECM WF New sletter,110:25-35.DOI:ECM WF New sletter n.110.
    Sugimoto S,Ueno K,2010.Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts[J].J Geophys Res,115,D16105.DOI:10.1029/2009JD013609.
    Taniguchi K,Koike T,2008.Seasonal variation of cloud activity and atmospheric profiles over the eastern part of the Tibetan Plateau[J].J Geophys Res,113,D10104.DOI:10.1029/2007JD009321.
    Xu X,Zhao T,Lu C,2014.An important mechanism sustaining the atmospheric“w ater tow er”over the Tibetan Plateau[J].Atmos Chem Phys,14,18255-18275.DOI:10.5194/acp-14-11287-2014.
    陈隆勋,宋玉宽,刘骥平,等,1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报,57(5):549-560.Chen L X,Liu J P,Song Y K,et al,1999.On the diurnal variation of convection over Qinghai-Xizang Plateau during summer as related from meteorological satellite data[J].Acta M eteor Sinica,57(5):549-560.
    陈永仁,李跃清,2013.“12·7·22”四川暴雨的MCS特征及对短时强降雨的影响[J].气象,39(7):848-860.Chen Y R,Li YQ,2013.Characteristics of mesoscale connective system and its effects on short-time severe rainfall in Sichuan Basin During 21-22July 2012[J].M eteor M on,39(7):848-860.DOI:10.7519/j.issn.1000-0526.2013.07.006.
    单寅,林珲,付慰慈,等,2003.夏季青藏高原上中尺度对流系统初生阶段特征[J].热带气象学报,19(1):61-66.Shan Y,Lin H,Fu W C,et al,2003.The features of M CS during its initiation over Tibetan Plateau in summer[J].J Trop M eteor,19(1):61-66.DOI:10.16032/j.issn.1004-4965.2003.01.008.
    段旭,张秀年,许美玲,2004.云南及其周边地区中尺度对流系统时空分布特征[J].气象学报,62(2):243-251.Duan X,Zhang XN,Xu M L,2004.Spatial and temporal distributions of mesoscale convective systems in Yunnan and it's periphery areas[J].Acta M eteor Sinica,62(2):243-251.
    方兆宝,吴立新,林珲,等,2004.面向空间数据挖掘的MCSs移动和传播影响因素分析[J].热带气象学报,20(5):600-604.Fang Z B,Wu L X,Lin H,et al,2004.Correlation analysis of the factors of M CSs movement and promulgation w ith focus on spatial data eploration[J].J Trop M eteor,20(5):600-604.DOI:10.16032/j.issn.1004-4965.2004.05.017.
    高文良,郁淑华,2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象,37(1):54-67.Gao W L,Yu S H,2018.The case study in causes and environmental fields analysis of departure plateau vortex accompanying w ith induced southw est vortex[J].Plateau M eteor,37(1):54-67.DOI:10.7522/j.issn.1000-0534.2017.00020.
    巩远发,纪立人,段廷扬,2004.青藏高原雨季的降水特征与东亚夏季风爆发[J].高原气象,23(3):313-322.Gong Y F,Ji L R,Duan T Y,2004.Precipitation character of rainy season of Qinghai-Xizang Plateau and onset over east Asia monsoon[J].Plateau M eteor,23(3):313-322.DOI:10.7522/j.issn.1000-0534(2004)03-0313-10.
    过仲阳,林珲,江吉喜,等,2003.青藏高原上中尺度对流系统东移传播成因[J].地球信息科技,1:5-10.Guo Z Y,Lin H,Jiang J X,et al,2003.M ining eastw ard-moving M CSs features over the Tibetan Platean[J].Geo-information Sci,1:5-10.
    侯建忠,孙伟,杜继稳,2005.青藏高原东北侧一次MCC的环境流场及动力分析[J].高原气象,24(5):805-810.Hou J Z,Sun W,Du J W,2005.Analyses on circulation and dynamic features of a M CC on the side of northeast Qinghai-Xizang Plateau[J].Plateau M eteor,24(5):805-810.DOI:10.7522/j.issn.1000-0534(2005)05-0805-06.
    胡亮,李耀东,付容,等,2008.夏季青藏高原移动性对流系统与中国东部降水的相关关系[J].高原气象,27(2):301-308.Hu L,Li Y D,Fu R,et al,2008.The relationship betw een mobile mesoscale convective systems over Tibetan Plateau and the rainfall over eastern China in summer[J].Plateau M eteor,27(2):301-308.DOI:10.7522/j.issn.1000-0543(2008)02-0301-09.
    胡梦玲,游庆龙,林厚博,2015.青藏高原地区多套位势高度和风场再分析资料的对比分析[J].冰川冻土,37(5):1229-1244.Hu M L,You Q L,Lin H B,2015.Comparative analyses of geopotential height and w ind field from multiple reanalysis data over the Tibetan plateau[J].Journal of Glaciology and Geocryology,2015,37(5):1229-1244.DOI:10.7522/j.issn.1000-0240.2015.0137.
    江吉喜,范梅珠,2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学,26(2):263-270.Jiang J X,Fan M Z,2002.Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer[J].Chinese J Atmos Sci,26(2):263-270.
    江吉喜,项续康,范梅珠,1996.青藏高原夏季中尺度强对流系统的时空分布[J].应用气象学报,7(4):473-478.Jiang J X,Xiang X K,Fan M Z,1996.The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer[J].Quart J Appl Meteor,7(4):473-478.
    敬文琪,崔园园,刘瑞霞,等,2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象,36(4):900-911.Jing W Q,Cui Y Y,Liu R X,et al,2017.Quantitative study on w ater vapor pumping over Qinghai-Tibetan Plateau and w ater vapor paths influencing summer precipitation in the M iddle and Low er Reach of the Yangtze River[J].Plateau M eteor,36(4):900-911.DOI:10.7522/j.issn.1000-0534.2016.00084.
    梁玲,李跃清,胡豪然,等,2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象,32(6):1538-1545.Liang L,Li Y Q,Hu H R,et al,2013.Numerical study of influence of sensible heat anomalies in summer over Qinghai-Xizang Plateau on rainfall in Sichuan-Chongqing Regions[J].Plateau M eteor,32(6):1538-1545.DOI:10.7522/j.issn.1000-0534.2013.00028.
    林珲,江吉喜,杨育彬,等,2006.青藏高原中尺度对流系统的时空演变特征及规律[J].武汉大学学报,31(7):576-581.Lin H,Jiang J X,Yang Y B,et al,2006.Spatial-temporal evolvement trends of mesoscale convective systems over Qinghai-Tibetan Plateau[J].Geomatics and Information Science of Wuhan University,31(7):576-581.DOI:10.3969/j.issn.1671-8860.2006.07.004.
    刘建军,陈葆德,2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象,36(3):632-642.Liu Jianjun,Chen Baode,2017.Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from CloudSat observation[J].Plateau M eteoro,36(3):632-642.DOI:10.7522/j.issn.1000-0534.2017.00028.
    卢乃锰,范锦龙,刘健,等,2013.卫星遥感在青藏高原大气科学研究中的应用前景[J].气象科技进展:英文版,3(3):29-33.Lu N M,Fan J L,Liu J,et al,2013.The potential satellite applications in the atmospheric sciences study on the Tibetan Plateau[J].Adv M eteor Sci Technol,3(3):29-33.DOI:10.3969/j.issn.2095-1973.2013.03.004.
    栾澜,孟宪红,吕世华,等,2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象,36(2):283-293.Luan Lan,M eng Xianhong,LüShihua,et al,2017.Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J].Plateau M eteoro,36(2):283-293.DOI:10.7522/j.issn.1000-0534.2016.00086.
    潘晓,傅云飞,2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].髙原气象,34(5):1191-1203.Pan X,Fu Y F,2015.A-nalysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau[J].Plateau M eteor,34(5):1191-1203.DOI:10.7522/j.issn.1000-0534.2014.00112.
    秦庆昌,沈学顺,2015.青藏高原地表气压拖曳的估算及其特征分析[J].气象学报,73(1):93-109.Qin Q C,Shen X S,2015.An estimate of surface pressure drag of the Tibetan Plateau and its characteristic analysis[J].Acta M eteor Sinica,73(1):93-109.DOI:10.11676/qxxb2014.066.
    苏君毅,2006.引起中尺度对流系统移动传播的环境场研究[D].上海:华东师范大学.Su J Y,2006.The study on the environmental physical field affecting the movement and the propagation of mesoscale convective system[D].Shanghai:East China Normal University.
    孙建华,李娟,沈新勇,等,2015.2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J].气象,41(5):533-543.Sun JH,Li J,Shen X Y,et al,2015.M esoscale system study of extreme rainfall over Sichuan Basin in july 2013[J].M eteor M onth,41(5):533-543.DOI:10.7519/j.issn.1000-0526.2015.05.002.
    王鑫,李跃清,郁淑华,等,2009.青藏高原低涡活动的统计研究[J].高原气象,28(1):64-71.Wang X,Li Y Q,Yu S H,et al,2009.Statistical study on the plateau low vortex activities[J].Plateau M eteor,28(1):64-71.
    谢欣汝,游庆龙,保云涛,等,2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象,37(1):78-92.Xie XR,You Q L,Bao Y T,et al,2018.The connection betw een the precipitation and w ater vapor transport over Qinhai-Tibetan Plateau in summer based on the multiple datasets[J].Plateau M eteor,37(1):78-92.DOI:10.7522/j.issn.1000-0534.2017.00030.
    许威杰,张耀存,2017.凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J].高原气象,36(3):763-775.Xu WJ,Zhang Y C,2017.Numerical study on the feedback betw een latent heating and convection in a Qinghai-Tibetan Plateau vortex[J].Plateau Meteor,36(3):763-775.DOI:10.7522/j.issn.1000-0534.2016.00061.
    许小峰,2017.夏季青藏高原东移云团引发长江流域暴雨的研究[A].青藏高原地-气耦合系统变化及其全球气候效应2017青藏高原前沿科学研讨会文集[C].Xu X F,2017.A study on the rainstorm in the Yangtze River Basin caused by the eastw ard migration of the Qinghai Tibet Plateau in the summer[A].The changes of the Tibetan Plateau land-atmosphere coupled system and its effects on global climate[C].
    薛春芳,侯建忠,陈小婷,2017.青藏高原东北侧MCC特征分析[J].干旱气象,35(2):214-224.Xue C F,Hou J Z,Chen XT,et al,2017.Characteristics analysis of M CC in the Northeast Side of Tibetan Plateau[J].J Arid M eteor,35(2):214-224.DOI:10.11755/j.issn.1006-7639(2017)-02-0214.
    荀学义,胡泽勇,崔桂凤,等,2015.青藏高原近地层及北侧气压系统的季节性振荡变化[J].冰川冻土,37(2):360-368.Xun XY,Hu Z Y,Cui G F,et al,2015.Seasonal variations of the pressure systems in surface layer and northern regions of the Tibetan Plateau[J].Journal of Glaciology and Geocryology,37(2):360-368.DOI:10.7522/j.issn.1000-0240.2015.0039.
    杨冰韵,吴晓京,郭徵,2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象,36(6):1655-1664.Yang BY,Wu X J,Guo Z,2017.The characteristics of cloud properties in deep convective clouds across China w ith the CloudSat Dataset[J].Plateau Meteor,36(6):1655-1664.DOI:10.7522/j.issn.1000-0534.2017.00006.
    郁淑华,高文良,彭骏,2012.青藏高原低涡活动对降水影响的统计分析[J].高原气象,31(3):592-604.Yu S H,Gao W L,Peng J,2012.Statistical analysis on influence of Qinghai-Xizang Plateau vortex activity on precipitation in China[J].Plateau M eteor,31(3):592-604.DOI:10.7522/j.issn.1000-0543(2012)03-0592-13.
    张顺利,陶诗言,张庆云,等,2002.长江中下游致洪暴雨的多尺度条件[J].科学通报,47(6):467-473.Zhang S L,Tao S Y,Zhang Q Y,et al,2002.M ulti-scale conditions of torrential rain in the middle and low er reaches of the Yangtze river[J].Sci Bull,47(6):467-473.
    张长灿,李栋梁,王慧,等,2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象,36(1):13-23.Zhang C C,Li D L,Wang H,et al,2017.Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J].Plateau M eteor,36(1):13-23.DOI:10.7522/j.issn.1000-0534.2016.00028.
    章凝丹,钱正安,罗四维,1982.东亚地区5-7月平均大气加热场和月平均环流变化[J].高原气象,2(1):35-42.Zhang N D,Qian Z A,Luo S W,1982.The monthly mean atmospheric heating field and variations of circulation in may-july over east Asia[J].Plateau Meteor,2(1):35-42.
    章凝丹,姚辉,1983.青藏高原雨季起讫的研究[J].高原气象,3(1):50-59.Zhang N D,Yao H,1983.A study of the beginning and ending of rainy season over QingZang Plateau[J].Plateau M eteor,3(1):50-59.
    赵艳风,王东海,尹金方,2014.基于CloudSat资料的青藏高原地区云微物理特征分析[J].热带气象学报,30(2):239-248.Zhao Y F,Wang D H,Yin J F,2014.A study of cloud microphysical characteristics over the Tibetan Plateau using CloudSat data[J].JTrop M eteor,30(2):239-248.DOI:10.3969/j.issn.1004-4965.2014.02.005.
    卓嘎,徐样德,陈联寿,2002.青藏高原对流云团东移发展的不稳定特征[J].应用气象学报,13(4):448-456.Zhuo G,Xu X D,Chen L S,2002.Instability of eastw ard movement and development of convective cloud clusters over Tibetan Plateau[J].J Appl M eteor Sci,13(4):448-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700