2000—2016年秦岭山地植被覆盖变化地形分异效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Topographic differentiation effect on vegetation cover in the Qinling Mountains from 2000 to 2016
  • 作者:赵婷 ; 白红英 ; 邓晨晖 ; 孟清 ; 郭少壮 ; 齐贵增
  • 英文作者:ZHAO Ting;BAI Hongying;DENG Chenhui;MENG Qing;GUO Shaozhuang;QI Guizeng;Northwest University;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity;
  • 关键词:秦岭山地 ; 植被覆盖变化 ; 地形 ; 分异效应
  • 英文关键词:Qinling Mountains;;vegetation cover change;;topography;;differentiation effect
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西北大学;陕西省地表系统与环境承载力重点实验室;
  • 出版日期:2019-04-01 09:14
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家林业公益性行业科研专项(201304309)
  • 语种:中文;
  • 页:STXB201912028
  • 页数:11
  • CN:12
  • ISSN:11-2031/Q
  • 分类号:291-301
摘要
利用2000—2016年MODIS NDVI数据,采用趋势分析及地形差异修正法,探讨秦岭山地植被覆盖变化在南北坡、不同海拔以及不同坡度坡向下的空间分异性。结果表明:近17年来,秦岭山地植被覆盖度良好,整体呈上升趋势,南北坡、不同海拔、不同坡度、不同坡向下植被覆盖度有所差异,植被变化趋势也不同。(1)就南北坡而言,近17年来秦岭南坡植被覆盖度上升趋势大于北坡,南坡植被覆盖以上升趋势为主,而北坡以稳定为主。(2)不同的海拔高度上秦岭山地植被覆盖变化在存在分异性:低海拔区域呈减少趋势,中海拔区呈明显的上升趋势,2000 m以上的高海拔区域北坡的植被覆盖度较为稳定,而南坡的2500到3100 m区域内有较明显的减小趋势。(3)从坡度来看,随着坡度的增加秦岭山地植被覆盖度由减少转为增加再转为稳定,南北坡植被变化分异性不明显。(4)不同坡向上,秦岭南北坡植被覆盖度变化差异明显,由阴坡转为阳坡时,北坡植被覆盖有明显的增长趋势,而南坡则不明显,植被覆盖度减小区在南北坡的分布呈相反趋势,分别分布在南坡的阳坡以及北坡的阴坡。
        Based on the MODIS NDVI data set for 2000—2016, we studied the spatial anisotropy of vegetation coverage change depending on north-south slopes, elevation, slope, and slope aspect by trend analysis, and the coefficient was corrected by topography. The results showed that during the past 17 years, the Qinling Mountains have had high vegetation coverage, and it will continue to increase. The vegetation coverage and its variation trend varied with topography.(1) The increasing trend in vegetation coverage was higher in the south slope than that in the north slope. The vegetation coverage in the south slope was dominated by an upward trend, whereas that in the north slope was mainly stable.(2) There was a difference in variation in vegetation coverage at different elevations. The low-elevation area exhibited a decreasing trend, whereas the mid-elevation areas showed an obvious increasing trend. The vegetation coverage was relatively stable in the north slope with an altitude of >2000 m, whereas an obvious decreasing trend was observed between 2500 and 3100 m in the south slope.(3) With the increase in slope, the trend in vegetation coverage change shifted from decreasing to increasing, and turned to stable in the steep slopes. The vegetation coverage change in the north and south slopes did not differ considerably.(4) The vegetation coverage change showed an obvious difference between the north and south slopes on different slope aspects. As the slope aspect shifted from shady to sunny, the change in vegetation coverage was obvious in the north slope, whereas that in the southern slope was not obvious. The distribution of decreased vegetation coverage area exhibited opposite trends in the north and south slopes, which are on the shady and sunny slopes, respectively.
引文
[1] IPCC.Summary for Policymakers of Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK:Cambridge University Press,2007.
    [2] Zhao X,Tan K,Zhao S,Fang J.Changing climate affects vegetation growth in the arid region of the northwestern China.Journal of Arid Environments,2011,75(10):946- 952.
    [3] Parmesan C,Yohe G.A globally coherent fingerprint of climate change impacts across natural systems.Nature,2003,421(6918):37- 42.
    [4] 邓晨晖,白红英,高山,刘荣娟,马新萍,黄晓月,孟清.秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应.自然资源学报,2018,33(3):425- 438.
    [5] Nemani R R,Keeling C D,Hashimoto H,Jolly W M,Piper S C,Tucker C J,Myneni R B,Running S W.Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science,2003,300(5625):1560- 1563.
    [6] Ma Z H,Peng C H,Zhu Q A,Chen H,Yu G R,Li W Z,Zhou X L,Wang W F,Zhang W H.Regional drought-induced reduction in the biomass carbon sink of Canada′s boreal forests.Proceedings of the National Academy of Sciences of the United States of America,2012,109(7):2423- 2427.
    [7] 白红英.秦巴山区森林植被对环境变化的响应.北京:科学出版社,2014.
    [8] Cui L L,Shi J.Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China.Journal of Geographical Sciences,2010,20(2):163- 176.
    [9] 崔晓临,白红英,王涛.秦岭地区植被NDVI海拔梯度差异及其气温响应.资源科学,2013,35(3):618- 626.
    [10] 王涛,白红英.秦岭山地植被NDVI对气候变化与人类活动的响应.山地学报,2017,35(6):778- 789.
    [11] 申丽娜,景悦,孙艳玲,杨艳丽,吕豪朋.海河流域植被覆盖度变化的图谱特征及其地形梯度差异分析.天津师范大学学报:自然科学版,2017,37(6):43- 49,54- 54.
    [12] 朱晓勤,刘康,秦耀民.基于GIS的秦岭山地植被类型与环境梯度的关系分析.水土保持学报,2006,20(5):192- 196.
    [13] 李双双,芦佳玉,延军平,刘宪锋,孔锋,王娟.1970—2015年秦岭南北气温时空变化及其气候分界意义.地理学报,2018,73(1):13- 24.
    [14] 李双双,杨赛霓,刘宪锋.1960—2013年秦岭淮河南北极端降水时空变化特征及其影响因素.地理科学进展,2015,34(3):354- 363.
    [15] 白晶.秦岭南北气候变化特征及人为驱动力差异分析[D].西安:陕西师范大学,2011.
    [16] 马新萍.秦岭林线及其对气候变化的响应[D].西安:西北大学,2015.
    [17] 康慕谊,朱源.秦岭山地生态分界线的论证.生态学报,2007,27(7):2774- 2784.
    [18] 岳明.秦岭植物垂直带谱完整复杂.森林与人类,2015,(2):76- 81.
    [19] 李京忠,曹明明,邱海军,薛冰,胡胜,崔鹏.汶川地震区灾后植被恢复时空过程及特征—以都江堰龙溪河流域为例.应用生态学报,2016,27(11):3479- 3486.
    [20] 张景华,封志明,姜鲁光,杨艳昭.澜沧江流域植被NDVI与气候因子的相关性分析.自然资源学报,2015,30(9):1425- 1435.
    [21] 童晓伟,王克林,岳跃民,廖楚杰,徐艳芳,朱海涛.桂西北喀斯特区域植被变化趋势及其对气候和地形的响应.生态学报,2014,34(12):3425- 3434.
    [22] 朱林富,谢世友,杨华,马明国.基于MODIS EVI的重庆植被覆盖变化的地形效应.自然资源学报,2017,32(12):2023- 2033.
    [23] 李建国,濮励杰,刘金萍,李月臣,刘丽丽.2001年至2010年三峡库区重庆段植被活动时空特征及其影响因素.资源科学,2012,34(8):1500- 1507.
    [24] 蔡宏,何政伟,安艳玲,邓辉.基于RS和GIS的赤水河流域植被覆盖度与各地形因子的相关强度研究.地球与环境,2014,42(4):518- 524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700