鲁氏接合酵母产葡萄糖醛酸发酵条件优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimized fermentation condition for Zygosaccharomyces rouxii producing glucuronic acid
  • 作者:李益烽 ; 方芳
  • 英文作者:LI Yifeng;FANG Fang;Key Laboratory of Industrial Biotechnology,Ministry of Education ( Jiangnan University);State Key Laboratory of Food Science and Technology ( Jiangnan University);
  • 关键词:葡萄糖醛酸(glucuronic ; acid ; Glc ; UA) ; 鲁氏接合酵母 ; 单因素优化 ; 补料发酵
  • 英文关键词:glucuronic acid(GlcUA);;Zygosaccharomyces rouxii;;singer factor optimization;;fed-batch fermentation
  • 中文刊名:SPFX
  • 英文刊名:Food and Fermentation Industries
  • 机构:工业生物技术教育部重点实验室(江南大学);食品科学与技术国家重点实验室(江南大学);
  • 出版日期:2019-03-27 10:56
  • 出版单位:食品与发酵工业
  • 年:2019
  • 期:v.45;No.382
  • 基金:国家轻工技术与工程一流学科自主课题(LITE2018-08)
  • 语种:中文;
  • 页:SPFX201910007
  • 页数:6
  • CN:10
  • ISSN:11-1802/TS
  • 分类号:46-51
摘要
以1株产葡萄糖醛酸的鲁氏接合酵母ZSR2为研究对象,通过单因素优化确定了鲁氏接合酵母ZSR2发酵产葡萄糖醛酸的最佳发酵条件(发酵培养基含有80 g/L蔗糖、30 g/L大豆蛋白胨,培养基初始p H 5. 0,种龄9 h,接种量为3%)。在此条件下,鲁氏接合酵母ZSR2产葡萄糖醛酸水平提高到14. 68 g/L,是优化前的3. 8倍。此外,通过在发酵过程中采用补料策略,使葡萄糖醛酸产量进一步提高到22. 36 g/L,是目前纯菌发酵法产葡萄糖醛酸的最高水平。研究结果可为微生物发酵法生产葡萄糖醛酸的工业化进程奠定基础。
        The fermentation condition for producing Glc UA by Zygosaccharomyces rouxii ZSR2,a Glc UA producer,was optimized by single factor experiments. It was found that the titer of Glc UA under the optimal fermentation condition( the medium contained 80 g/L sucrose,30 g/L soy peptone,initial p H = 5. 0,with 3% inoculum and aged for 9 h)was 14. 68 g/L,which was 3. 8 times higher than that of unoptimized. Besides,the production of Glc UA enhanced to22. 36 g/L by fed-batch fermentation,which was the highest level reported regarding Gluc UA production by single strain fermentation. In conclusion,this study lays a foundation for industrial production of Glc UA by microbial fermentation.
引文
[1] HOU Z,LIU Y,ZHANG X X,et al. Synthesis of glucuronic acid derivatives via the efficient and selective removal of a C6 methyl group[J]. Tetrahedron Letters,2016,5(5):423-426.
    [2] MOON T S,YOON S H,LANZA A M,et al. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli[J]. Applied and Environmental Microbiology,2009,75(3):589-595.
    [3] JAYABALAN R,SUBATHRADEVI P,MARIMUTHU S,et al. Changes in free-radical scavenging ability of Kombucha tea during fermentation[J]. Food Chemistry,2008,109(1):227-234.
    [4] DELATTRE C,MICHAUD P,LION J M,et al. Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain[J]. Journal of Biotechnology,2005,118(4):448-457.
    [5] KOIZUMI S. Large-scale production of oligosaccharides using bacterial functions[J]. Trends in Glycoscience and Glycotechnology,2010,15(82):65-74.
    [6] NGUYEN N K,NGUYEN H T,LE P H. Effects of Lactobacillus casei and alterations in fermentation conditions on biosynthesis of glucuronic acid by a Dekkera bruxellensisGluconacetobacter intermedius Kombucha symbiosis model system[J]. Food Biotechnology,2015,29(4):356-370.
    [7] VINA I,SEMJONOVS P,LINDE R,et al. Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations[J]. International Journal of Research and Reviews in Applied,2013,14(1):17-25.
    [8] CIMINI D,ROSA M D,SCHIRALDI C. Production of glucuronic acid-based polysaccharides by microbial fermentation for biomedical applications[J]. Biotechnology Journal,2012,7(2):237-250.
    [9]陈辉,和娴娴.葡萄糖醛酸及其内酯制备方法的研究进展[J].山东食品发酵,2011(1):6-8.
    [10]周锡堂,林培喜,胡智华.葡醛内酯生产工艺改进研究[J].桂林工学院学报,2003(1):132-135.
    [11]郭耀基,王晓峰,唐黎华.采用二次内酯化方法从葡醛内酯生产废液中回收产品[J].无锡轻工大学学报,2004,23(2):67-70; 75.
    [12]房媛.葡萄糖醛酸内酯清洁生产[D].西安:陕西科技大学,2013.
    [13] SHIUE E,PRATHER K L. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport[J]. Metabolic Engineering,2014,22:22-31.
    [14] MOON T S,DUEBER J E,SHIUE E,et al. Use of modular,synthetic scaffolds for improved production of glucaric acid in engineered E. coli[J]. Metabolic Engineering,2010,12(3):298-305.
    [15]和娴娴.葡萄糖醛酸产生菌的筛选及培养条件研究[D].石家庄:河北科技大学,2012.
    [16] PETROVIE S E,MALBASA R V,VERAC R M. Biosynthesis of glucuronic acid by means of tea fungus[J]. Molecular Nutrition and Food Research,2010,44(2):138-139.
    [17] BLANC P J. Characterization of the tea fungus metabolites[J]. Biotechnology Letters,1996,18(2):139-142.
    [18] NGUYEN N K,DONG N T N,NGUYEN H T,et al.Lactic acid bacteria:promising supplements for enhancing the biological activities of Kombucha[J]. Springerplus,2015,4(1):91.
    [19] BEIGMOHAMMADI F,KARBASI A,BEIGMOHAMMADI Z. Production of high glucuronic acid level in Kombucha beverage under the influence environmental condition[J]. Journal of Food Technology and Nutrition,2010,2(26):30-38.
    [20] YANG Z,FENG Z,JI B,et al. Symbiosis between microorganisms from Kombucha and Kefir:Potential significance to the enhancement of Kombucha function[J]. Applied Biochemistry and Biotechnology,2010,160(2):446-455.
    [21] NGUYEN N K,DONG N T N,LE P H,et al. Evaluation of the glucuronic acid production and other biological activities of fermented sweeten-black tea by Kombucha layer and the co-culture with different Lactobacillus sp. strains[J]. International Journal of Modern Engineering Research,2014,4(1):12-17.
    [22] JAYABALAN R,MARIMUTHU S,SWAMINATHAN K.Changes in content of organic acids and tea polyphenols during kombucha tea fermentation[J]. Food Chemistry,2007,102(1):392-398.
    [23] FILIPPIS F D,TROISE A D,VITAGLIONE P,et al.Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation[J]. Food Microbiology,2018,73:11-16.
    [24]范艳群,许建中,徐询,等.离子排斥色谱法同时测定葡萄糖醛酸和内酯及葡萄糖醛酸稳定性[J].应用化学,2014,31(4):450-454.
    [25]国家食品药品监督管理总局. GB 5009. 5—2016,食品中蛋白质的测定[S].北京:中国标准出版社,2016.
    [26]宋江.酱油酿造用鲁氏接合酵母菌的生长及其产香气成分研究[D].长沙:湖南农业大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700