用户名: 密码: 验证码:
黑潮延伸区气旋式涡旋浮游植物繁殖个例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Case Study of Cyclonic Eddy Phytoplankton Bloom in the Kuroshio Extension
  • 作者:王同宇 ; 张书文 ; 马永贵 ; 陈法锦 ; 蒋晨 ; 于杰
  • 英文作者:WANG Tong-yu;ZHANG Shu-wen;MA Yong-gui;CHEN Fa-jin;JIANG Chen;YU Jie;Guangdong Key Laboratory of Coastal Ocean Variation and Disaster Prediction/College of Ocean and Meteorology, Guangdong Ocean University;Laboratory for Regional Oceanography and Numerical Modeling,National Laboratory for Marine Science and Technology;
  • 关键词:黑潮延伸区 ; 气旋式涡旋 ; 浮游植物繁殖 ; 混合层 ; 埃克曼抽吸
  • 英文关键词:Kuroshio extension;;cyclonic eddy;;phytoplankton bloom;;mixed layer depth;;Ekman pumping
  • 中文刊名:SHDX
  • 英文刊名:Journal of Guangdong Ocean University
  • 机构:广东省近海海洋变化与灾害预警重点实验室/广东海洋大学海洋与气象学院;区域海洋动力学与数值模拟功能实验室/海洋科学与技术国家实验室;
  • 出版日期:2019-03-19 10:45
  • 出版单位:广东海洋大学学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划重点专项(2016YFC1401403);; 国家自然科学基金面上项目(41676008和41876005);; 国际合作项目(GASI-IPOVI-04);; 广东省自然科学基金(2016A030312004)
  • 语种:中文;
  • 页:SHDX201902012
  • 页数:10
  • CN:02
  • ISSN:44-1635/N
  • 分类号:97-106
摘要
【目的】研究黑潮延伸体区域内的涡旋活动对浮游植物繁殖的影响。【方法】根据高分辨率的卫星遥感和再分析资料,对李亚诺夫指数(FSLE)、海表面温度(SST)、海表面高度异常(SLA)、叶绿素(Chl-a)浓度进行归一化合成分析,并计算气旋式涡旋内混合层厚度(MLD)以及引起的埃克曼抽吸速率。【结果与结论】黑潮延伸体区域内的气旋式涡旋引起的埃克曼抽吸作用和冬季混合是Chl-a浓度升高的主要驱动机制。周期为44周的涡旋在16~23周(春季)期间Chl-a浓度高于同期背景场,最大Chl-a浓度是周围的3倍。冬季强湍流混合和涡-风导致的埃克曼抽吸作用使得混合层深度加深至由埃克曼抽吸主导营养盐输送的跃层深度,结合涡致埃克曼抽吸,有利于携带跃层内更多的营养盐输送至混合层,配合春季充足的光照条件,则会更进一步促进浮游植物繁殖。长时间的闭合拉格朗日拟序结构,对于维持高浓度Chl-a有一定的作用。
        【Objectives】The influence of the cyclonic eddy of the Kuroshio extension with more active vortex characteristics on phytoplankton blooms.【Method】Based on high-resolution remote sensing satellite and re-analysis data, composite averages of finite size lyapunov exponents(FSLE), sea surface temperature(SST), sea level anomaly(SLA) and Chlorophyll-a(Chl-a) concentrations, calculate the changes of mixed layer depth(MLD) and Ekman pumping velocities.【Result and Conclusion】The results show that the main mechanisms are eddy-Ekman pumping and winter low-temperature mixing.CHL-a concentrations of the cyclonic eddy with life cycle of 44 weeks was higher than the background field during the period of 16-23 weeks(spring), and it was three times that of the surrounding. The winter mixed layer deepening velocities was three times that of the Ekman pumping velocities. Strong turbulent mixing in winter and Ekman pumping caused by eddy-wind deepened the depth of the mixed layer to the depth of the eutrophic layer. Combined with eddy-induced Ekman pumping, which was beneficial to carry more nutrients to the mixed layer and to further promote phytoplankton bloom with sufficient light during the spring. Meanwhile, the long-term closure of the lagrangian coherent structures may maintain high Chl-a concentrations.
引文
[1]CHAIGNEAU A,ELDIN G,DEWITTE B.Eddy activity in the four major upwelling systems from satellite altimetry(1992-2007)[J].Progress in Oceanography,2009,83(1):117-123.
    [2]MIZUNO K,WHITE W B.Annual and interannual variability in the Kuroshio current system[J].Journal of Physical Oceanography,1983,13(10):1847-1867.
    [3]GAUBE P,CHELTON D B,STRUTTON P G,et al.Satellite observations of chlorophyll,phytoplankton biomass,and Ekman pumping in nonlinear mesoscale eddies[J].Journal of Geophysical Research Oceans,2013,118(12):6349-6370.
    [4]CHELTON D B,SCHLAX M G,SAMELSON R M.Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography,2011,91(2):167-216.
    [5]KOUKETSU S,KANEKO H,OKUNISHI T,et al.Mesoscale eddy effects on temporal variability of surface chlorophyll a,in the Kuroshio Extension[J].Journal of Oceanography,2016,72(3):439-451.
    [6]DONEY S C,GLOVER D M,MCCUE S J,et al.Mesoscale variability of Sea‐viewing Wide Field‐of‐view Sensor(SeaWiFS)satellite ocean color:Global patterns and spatial scales[J].Journal of Geophysical Research Oceans,2003,108(C2):3024.
    [7]MCGILLICUDDY JR D J,ROBINSON A R.Eddy-induced nutrient supply and new production in the Sargasso Sea[J].Deep Sea Research Part I:Oceanographic Research Papers,1997,44(8):1427-1450.
    [8]EDEN B R,STEINBERG D K,GOLDTHWAIT S A,et al.Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea[J].Deep Sea Research Part I Oceanographic Research Papers,2009,56(10):1757-1776.
    [9]SASAI Y,RICHARDS K J,ISHIDA A,et al.Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model[J].Ocean Dynamics,2010,60(3):693-704.
    [10]TILBURG C E,SUBRAHMANYAM B,O'BRIEN J J.Ocean color variability in the Tasman Sea[J].Geophysical Research Letters,2002,29(10):1251-1254.
    [11]MCGILLICUDDY D J,ANDERSON L A,BATES N R,et al.Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J].Science,2007,316(5827):1021-1026.
    [12]MARTIN A P,RICHARDS K J.Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy[J].Deep-Sea Research Part II,2001,48(4):757-773.
    [13]GAUBE P,MCGILLICUDDY D J,CHELTON D B,et al.Regional variations in the influence of mesoscale eddies on near‐surface chlorophyll[J].Journal of Geophysical Research Oceans,2015,119(12):8195-8220.
    [14]HUANG J,XU F,ZHOU K,et al.Temporal evolution of near‐surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific[J].Journal of Geophysical Research Oceans,2017:6165-6179
    [15]SIEGEL D A,PETERSON P,JR M G,et al.Bio‐optical footprints created by mesoscale eddies in the Sargasso Sea[J].Geophysical Research Letters,2011,38(13):392-392.
    [16]HE Q,ZHAN H,CAI S,et al.Eddy effects on surface chlorophyll in the northern South China Sea:Mechanism investigation and temporal variability analysis[J].Deep Sea Research Part I Oceanographic Research Papers,2016,112:25-36.
    [17]HE Q,ZHAN H,CAI S,et al.On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific:The role of eddy-Ekman pumping[J].Progress in Oceanography,2016,141:202-211.
    [18]GAUBE P,CHELTON D B,SAMELSON R M,et al.Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping[J].Journal of Physical Oceanography,2015,45(1):104-132.
    [19]CHAIGNEAU A,GIZOLME A,GRADOS C.Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatio-temporal patterns[J].Progress in Oceanography,2008,79(2-4):106-119.
    [20]LEHAHN Y,D'OVIDIO F,LéVY M,et al.Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring[J].Geophysical Research Letters,2011,38(16):239-255.
    [21]D'OVIDIO F,FERNáNDEZ V,HERNáNDEZ‐GARCíA E,et al.Mixing structures in the Mediterranean Sea from finite‐size Lyapunov exponents[J].Geophysical Research Letters,2004,31(17):345-359.
    [22]WALLCRAFT A J,METZGER E J,CARROLL S N.2009.Software design description for the HYbrid Coordinate Ocean Model(HYCOM),version 2.2[R/OL].(2009-02-12)[2014-10-30].https://hycom.org/.
    [23]KARA A B,ROCHFORD P A,HURLBURT H E.Mixed layer depth variability over the global ocean[J].Journal of Geophysical Research:Oceans,2003,108(C3):3079.
    [24]ITOH S,YASUDA I.Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly[J].Journal of Physical Oceanography,2010,40(5):1018-1034.
    [25]HE Q,ZHAN H,SHUAI Y,ET A L.Phytoplankton bloom triggered by an anticyclonic eddy:The combined effect of eddy‐Ekman pumping and winter mixing[J].Journal of Geophysical Research,2017,122(6):4886-4901.
    [26]WU R,LI C.Upper ocean response to the passage of two sequential typhoons[J].Deep Sea Research Part I:Oceanographic Research Papers,2018,132:68-79.
    [27]LU Z WANG G,SHANG X.Response of a preexisting cyclonic ocean eddy to a typhoon[J].Journal of Physical Oceanography,2016,46(8):2403-2410.
    [28]FURUYA K.Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean:Vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon[J].Marine Biology,1990,107(3):529-539.
    [29]DUFOIS F,HARDMAN-MOUNTFORD N J,GREENWOOD J,et al.Impact of eddies on surface chlorophyll in the South Indian Ocean[J].Journal of Geophysical Research:Oceans,2014,119(11):8061-8077.
    [30]KOUKETSU S,KANEKO H,OKUNISHI T,et al.Mesoscale eddy effects on temporal variability of surface chlorophyll a,in the Kuroshio Extension[J].Journal of Oceanography,2016,72(3):439-451.
    [31]MCGILLICUDDY D J,ANDERSON L A,BATES N R,et al.Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J].Science,2007,316(5827),1021-1026.
    [32]GUY C,SERGE P.A three‐dimensional ocean mesoscale simulation using data from the SEMAPHOREexperiment:Mixed layer heat budget[J].Journal of Geophysical Research Oceans,1998,103(C11):25081-25099.
    [33]LI Q P,WANG Y,DONG Y,et al.Modeling long‐term change of planktonic ecosystems in the northern South China Sea and the upstream Kuroshio Current[J].Journal of Geophysical Research Oceans,2015,120(6):3913-3936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700