基于柱前衍生化GC-MS的炒青绿茶加工过程中初级代谢物变化规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Changes of Primary Metabolites During the Manufacturing Process of Roasted Green Tea by Pre-column Derivatization Combining with GC-MS
  • 作者:陈美 ; 戴伟东 ; 李朋亮 ; 朱荫 ; 陈勤操 ; 杨艳芹 ; 谭俊峰 ; 林智
  • 英文作者:CHEN Mei;DAI Weidong;LI Pengliang;ZHU Yin;CHEN Qincao;YANG Yanqin;TAN Junfeng;LIN Zhi;Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences;Graduate School of Chinese Academy of Agricultural Sciences;
  • 关键词:炒青绿茶 ; 衍生化 ; 气质联用(GC-MS) ; 初级代谢产物
  • 英文关键词:roasted green tea;;derivatization;;gas chromatography-mass spectrometry(GC-MS);;primary metabolites
  • 中文刊名:CYKK
  • 英文刊名:Journal of Tea Science
  • 机构:中国农业科学院茶叶研究所农业部茶树生物学与资源利用重点实验室;中国农业科学院研究生院;
  • 出版日期:2019-06-15
  • 出版单位:茶叶科学
  • 年:2019
  • 期:v.39
  • 基金:中国农业科学院科技创新工程(CAAS-ASTIP-2014-TRICAAS)
  • 语种:中文;
  • 页:CYKK201903008
  • 页数:12
  • CN:03
  • ISSN:33-1115/S
  • 分类号:71-82
摘要
茶叶中的一些初级代谢产物前人研究较少,为了探明在炒青绿茶加工过程中这些初级代谢产物的变化规律,本研究以龙井43品种为原料制作了炒青绿茶,并采用了基于柱前衍生化的气相色谱-质谱联用法(GC-MS)对其进行测定。结果共鉴定出60种化合物,其中相对含量较高的为有机酸类、糖类、糖类衍生物。偏最小二乘法判别分析模型可成功区分炒青绿茶各个加工工序,并筛选出了关键差异化合物26种,聚类分析结果表明,这26种化合物在加工过程中的含量变化规律可分为以下3类:高→低:2-酮戊二酸、阿拉伯糖、没食子酸、吡喃葡萄糖醛酸、甘油葡萄糖苷、核糖、半乳糖、果糖、葡萄糖、磷酸、4-酮葡萄糖、核糖酸-1,4-内酯、甘露醇;高→低→高:尿黑酸、蔗糖、肌醇半乳糖苷、苏糖酸、松二糖、核糖酸、肌醇和柠檬酸;低→高→低:赤藓糖-1,4-内酯、磷酸氧丙基酯、焦谷氨酸、奎尼酸、己二酸。有机酸主要呈现先上升后下降趋势,糖类除蔗糖外主要呈现下降趋势。
        Few if any previous studies were carried out in the field of primary metabolite changes during the manufacturing process of roasted green tea. Longjing 43 was used to make roasted green tea and gas chromatography-mass spectrometry(GC-MS) with derivatization was used to determine the components. A total of60 compounds were identified, which included high levels of organic acids, carbohydrates and carbohydrate derivatives. Each steps of the processing could be successfully distinguished by partial least-squares discriminant analysis based on 26 key compounds. The results of cluster analysis indicated that the content changes of the26 compounds could be classified into three categories: high-low: 2-ketoglutaric acid, arabinose, gallic acid,glucopyranosiduronic acid, glyceryl-glucoside, ribose, galactose, fructose, glucose, phosphoric acid, 4-ketoglucose,ribono-1,4-lactone, and mannitol. High-low-high: homogentisic acid, sucrose, galactinol, threonic acid, turanose,ribonic acid, inositol and citric acid. Low-high-low: erythrose-1,4-lactone, oxypropyl phosphate, pyroglutamic acid,quinic acid and hexanedioic acid. Organic acids mainly showed a rising and then downward trend. Carbohydrates except sucrose showed a downward trend.
引文
[1]刘淑娟,李赛君,黄怀生,等.炒青绿茶加工过程中主要生化成分变化的研究[J].湖南农业科学,2008(5):113-115.
    [2]宛晓春,李大祥,张正竹,等.茶叶生物化学研究进展[J].茶叶科学,2015,35(1):1-10.
    [3]Xu Y,Ji W,Yu P,et al.Effect of extraction methods on the chemical components and taste quality of green tea extract[J].Food Chemistry,2018,248:146-154.
    [4]Pérez-Burillo S,Giménez R,Rufián-Henares J A,et al.Effect of brewing time and temperature on antioxidant capacity and phenols of white tea:relationship with sensory properties[J].Food Chemistry,2018,248:111-118.
    [5]Bandyopadhyay P,Ghosh A K,Ghosh C.Recent developments on polyphenol-protein interactions:effects on tea and coffee taste,antioxidant properties and the digestive system[J].Food&Function,2012,3(6):565-592.
    [6]Xu Y,Zou C,Gao Y,et al.Effect of the type of brewing water on the chemical composition,sensory quality and antioxidant capacity of Chinese teas[J].Food Chemistry,2017,236:142-151.
    [7]Zhang H,Li Y,Lv Y,et al.Influence of brewing conditions on taste components in Fuding white tea infusions[J].Journal of the Science of Food and Agriculture,2017,97(9):2826-2833.
    [8]Chatterjee T N,Roy R B,Tudu B,et al.Detection of theaflavins in black tea using a molecular imprinted polyacrylamide-graphite nanocomposite electrode[J].Sensors and Actuators B:Chemical,2017,246:840-847.
    [9]Yassin G H,Koek J H,Kuhnert N.Model system-based mechanistic studies of black tea thearubigin formation[J].Food Chemistry,2015,180:272-279.
    [10]Scharbert S,Hofmann T.Molecular definition of black tea taste by means of quantitative studies,taste reconstitution,and omission experiments[J].Journal of Agricultural and Food Chemistry,2005,53(13):5377-5384.
    [11]岳翠男,王治会,毛世红,等.茶叶主要滋味物质研究进展[J].食品研究与开发,2017,38(1):219-224.
    [12]杨启真,衷明华.氧弹燃烧-离子色谱法测定茶叶中硝酸盐与亚硝酸盐[J].广东化工,2016,43(12):225-226.
    [13]斯琴朝克图,章爱群,李娅,等.离子色谱法对茶汤中阴离子溶出的测定研究[J].湖北农业科学,2015,54(9):2229-2231.
    [14]董亚蕾,陈晓姣,胡敬,等.高效毛细管电泳在食品安全检测中的应用进展[J].色谱,2012,30(11):1117-1126.
    [15]Mirasoli M,Gotti R,Di Fusco M,et al.Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage[J].Talanta,2014,129:32-38.
    [16]Susanti E,Ciptati,Ratnawati R,et al.Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS[J].Asian Pacific Journal of Tropical Biomedicine,2015,5(12):1046-1050.
    [17]Xu J,Hu F,Wang W,et al.Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics[J].Food Chemistry,2015,186:176-184.
    [18]Ma L,Qiao Y,Du L,et al.Evaluation and optimization of a superior extraction method for the characterization of the volatile profile of black tea by HS-SPME/GC-MS[J].Food Analytical Methods,2017,10(7):2481-2489.
    [19]Wang C,Lv S,Wu Y,et al.Study of aroma formation and transformation during the manufacturing process of Biluochun green tea in Yunnan province by HS-SPME and GC-MS[J].Journal of the Science of Food and Agriculture,2016,96(13):4492-4498.
    [20]李娟,任路静,孙冠男,等.气相色谱-质谱联用技术及其在代谢组学中的应用[J].生物工程学报,2013,29(4):434-446.
    [21]詹益兴,陈贻文,周继红.衍生气相色谱及应用[M].1版.长沙:湖南大学出版社,1988:1-4.
    [22]李雪莹,林晨,王李平,等.衍生化-气相色谱法在食品安全检测中的应用[J].广州化工,2016,44(8):21-23.
    [23]Galbava P,Kubinec R,Szaboova Z,et al.The analysis of non-polar compounds in cigarette ashes by GC-MS[C]//12th International Students Conference on Modern Analytical Chemistry.Prague:Charles University,2016:62-66.
    [24]Hurtadofernández E,Bajoub A,Morales J C,et al.Exploratory analysis of avocado extracts by GC-MS:new insights into the avocado fruit ripening process[J].Analytical Methods,2015,7(17):7318-7326.
    [25]许辉,白国涛,潘国卿,等.硅烷化衍生化-气相色谱法测定不同品种莜麦的非淀粉多糖[J].内蒙古农业大学学报(自然科学版),2013,34(1):146-151.
    [26]张磊,曾仲大,叶国注,等.基于气相色谱-质谱联用与液相色谱-质谱联用的非靶向代谢组学用于3类茶叶中化学成分分析[J].色谱,2014,32(8):804-816.
    [27]Zhang L,Zeng Z,Zhao C,et al.A comparative study of volatile components in green,Oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis[J].Journal of Chromatography A,2013,1313:245-252.
    [28]齐玉岗,周天山,米晓玲,等.不同加工工艺对“陕茶1号”绿茶品质的影响[J].食品科学,2017,38(3):148-154.
    [29]周义.质谱数据处理算法的研究与应用设计[D].宁波:宁波大学,2017.
    [30]王凯利.基于代谢组学技术寻找日照绿茶标志性代谢物并探究其应用[D].济南:山东师范大学,2017.
    [31]杨晨,戴伟东,吕美玲,等.基于UHPLC-Q-TOF/MS的不同产地普洱生茶化学成分差异研究[J].茶叶科学,2017,37(6):605-615.
    [32]刘冉霞,丁立孝,梁青,等.日照球形绿茶加工过程中主要生化成分变化的研究[J].安徽农业科学,2014,42(21):7201-7204.
    [33]乔小燕,饶幸霞,黄国资,等.传统客家绿茶在连续化生产线加工过程中主要品质成分的变化趋势研究[J].江西农业学报,2015,27(4):74-77.
    [34]Aprea E,Charles M,Endrizzi I,et al.Sweet taste in apple:the role of sorbitol,individual sugars,organic acids and volatile compounds[J].Scientific Reports,2017,7(1):1-10.
    [35]Zheng H,Zhang Q,Quan J,et al.Determination of sugars,organic acids,aroma components,and carotenoids in grapefruit pulps[J].Food Chemistry,2016,205:112-121.
    [36]Yu H,Zhang Y,Zhao J,et al.Taste characteristics of Chinese bayberry juice characterized by sensory evaluation,chromatography analysis,and an electronic tongue[J].Journal of Food Science and Technology,2018,55(5):1624-1631.
    [37]刘爽,杨停,谭俊峰,等.绿茶滋味定量描述分析及其化学成分的相关性研究[J].中国农学通报,2014,30(24):40-46.
    [38]龚雪蛟,杜晓.炒青绿茶自动化生产线加工过程中品质成分变化[J].四川农业大学学报,2012,30(1):73-77.
    [39]李立祥,梅玉,金基强,等.信阳毛尖加工过程中主要化学成分研究[J].中国茶叶加工,2005(2):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700