双介质阻挡放电联合催化降解甲苯的副产物影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence factors on by-products of toluene removal from gas by combining double dielectric barrier discharge with catalysis
  • 作者:管政 ; 周武 ; 邵卫伟 ; 吴建 ; 李济吾
  • 英文作者:GUAN Zheng;ZHOU Wu;SHAO Weiwei;WU Jian;LI Jiwu;Environmental Science Research and Design Institute of Zhejiang Province;College of Environmental Science and Engineering,Zhejiang Gongshang University;
  • 关键词:双介质阻挡放电 ; 催化 ; 甲苯 ; O_3 ; NO_2
  • 英文关键词:double dielectric barrier discharge;;catalysis;;toluene;;O_3;;NO_2
  • 中文刊名:HJWR
  • 英文刊名:Environmental Pollution & Control
  • 机构:浙江省环境保护科学设计研究院;浙江工商大学环境科学与工程学院;
  • 出版日期:2019-06-15
  • 出版单位:环境污染与防治
  • 年:2019
  • 期:v.41;No.319
  • 基金:浙江省科技计划项目(No.2017F30027);; 浙江省自然科学基金资助项目(No.LY16E080001);; 浙江省新苗人才计划项目(No.2016R408059);; 浙江省环保科研计划项目(No.2015A028)
  • 语种:中文;
  • 页:HJWR201906011
  • 页数:6
  • CN:06
  • ISSN:33-1084/X
  • 分类号:55-60
摘要
双介质阻挡放电(DDBD)联合催化降解有机废气具有广阔的应用前景,探讨其副产物影响因素以便控制其浓度很重要。为此,采用自制高压电源与新型阵列式DDBD联合催化(以TiO_2/Al_2O_3或Co/活性炭为催化剂)反应器,考察了其反应放电特性与波形,研究了甲苯初始浓度、气量、相对湿度和能量密度对脱除甲苯废气产生副产物(O_3和NO_2)的影响。结果表明:O_3和NO_2的浓度均随着甲苯初始浓度、气量、相对湿度的增加而降低,但随着能量密度的增加而升高。催化剂可以显著降低O_3和NO_2浓度,其中Co/活性炭在降低O_3和NO_2浓度方面效果最显著。当甲苯初始质量浓度为300mg/m~3、气体相对湿度为55%、气量为100m~3/h、能量密度为7.2J/L时,DDBD联合Co/活性炭催化剂脱除甲苯废气产生的O_3质量浓度最低,为16.9mg/m~3;当甲苯初始质量浓度为50mg/m~3、相对湿度为85%、气量为100m~3/h、能量密度为7.2J/L时,DDBD联合Co/活性炭脱除甲苯废气产生的NO_2质量浓度最低,为23.5mg/m~3。
        Double dielectric barrier discharge(DDBD)with catalysis for degradation of organic gas technology has wide application prospect.It is very important to explore the influence factors of the by-products of toluene degradation by DDBD to control its concentration.A new type of reactor of array DDBD with catalysis was applied to remove toluene from gas,and the discharge characteristics and waveform of reactor were measured.The effects of the initial concentration of toluene,the gas flow rate,the air relative humidity and the specific energy density on the concentration of by-products(O_3and NO_2)in the process of toluene removal by DDBD were investigated.The results showed that the concentration of O_3and NO_2decreased with the increase of the initial concentration of toluene,the gas flow rate and the air relative humidity,but increased with the increasing of the specific energy density.The catalyst could significantly reduce the concentration of O_(3 )and NO_2,in which Co/activated carbon catalyst had the most significant effect in reducing the concentration of O_(3 )and NO_2.When the initial concentration of toluene was 300mg/m~3,the air relative humidity was 55%,the gas flow rate was 100m~3/h and the specific energy density was 7.2J/L,the lowest O_3concentration was gained and equal to 16.9mg/m~(3 )in the removal of toluene from gas by DDBD combined with the Co/activated carbon catalyst.When the initial concentration of toluene was 50 mg/m~3,the air relative humidity was 85%,the gas flow rate was 100m~3/h and the specific energy density was 7.2J/L,the lowest NO_2concentration was gained and equal to 23.5mg/m~(3 )in the removal of toluene from waste gas by DDBD combined with the Co/activated carbon catalyst.
引文
[1]张新民,薛志钢,孙新章,等.中国大气挥发性有机物控制现状及对策研究[J].环境科学与管理,2014,39(1):16-19.
    [2] KERMINEN V M,VIRKKULA A,HILLAMO R,et al.Secondary organics and atmospheric cloud condensation nuclei production[J].Journal of Geophysical Research:Atmospheres,2000,105(D7):9255-9264.
    [3] DOMINGO J L,ROVIRA J,VILAVERT L,et al.Health risks for the population living in the vicinity of an integrated waste management facility:screening environmental pollutants[J].Science of the Total Environment,2015,519(3):363-370.
    [4] HSIAO M C,MERRITT B T,PENETRANTE B M,et al.Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing[J].Journal of Applied Physics,1995,78(5):3451-3456.
    [5] KIRKPATRICK M J,FINNEY W C,LOCKE B R.Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge with reticulated vitreous carbon electrodes[J].Plasmas and Polymers,2003,8(3):165-177.
    [6] VERTRIEST R,MORENT R,DEWULF J,et al.Multi-pin-toplate atmospheric glow discharge for the removal of volatile organic compounds in waste air[J].Plasma Sources Science&Technology,2003,12(3):412-416.
    [7]高翔,骆仲泱,岑可法,等.非热平衡等离子体过程苯的降解研究[J].化工学报,2007,58(8):2275-2280.
    [8] JIANG C Q,MOHAMED A A,STARK R H,et al.Removal of volatile organic compounds in atmospheric pressure air by means of direct current glow discharges[J].IEEE Transactions on Plasma Science,2005,33(4):1416-1425.
    [9] MALIK M A,MINAMITANI Y,SCHOENBACH K H.Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds(VOCs)in a plasmacatalytic reactor[J].IEEE Transactions on Plasma Science,2005,33(1):50-56.
    [10] VAN DURME J,DEWULF J,DEMEESTERE K,et al.Postplasma catalytic technology for the removal of toluene from indoor air:effect of humidity[J].Applied Catalysis B:Environmental,2009,87(1/2):78-83.
    [11] MISTA W,KACPRZYK R.Decomposition of toluene using non-thermal plasma reactor at room temperature[J].Catalysis Today,2008,137(2/3/4):345-349.
    [12] SCHIORLIN M,MAROTTA E,REA M,et al.Comparison of toluene removal in air at atmospheric conditions by different corona discharges[J].Environmental Science&Technology,2009,43(24):9386-9392.
    [13] VAN DURME J,DEWULF J,SYSMANS W,et al.Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J].Chemosphere,2007,68(10):1821-1829.
    [14]王洪昌,李锻,吴彦,等.供电方式对介质阻挡放电-催化降解苯的影响[J].高电压技术,2009,35(11):2759-2763.
    [15] LYULYUKIN M N,BESOV A S,VORONTSOV A V.The influence of corona electrodes thickness on the efficiency of plasmachemical oxidation of acetone[J].Plasma Chemistry and Plasma Processing,2011,31(1):23-39.
    [16] ZHANG X M,ZHU J B,LI X Y,et al.Characteristics of styrene removal with an AC/DC streamer corona plasma system[J].IEEE Transactions on Plasma Science,2011,39(6):1482-1488.
    [17] AYMEN A A,ABDELKRIM B,SMAIL M,et al.Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor:synergetic effect and mass transfer[J].Chemical Engineering Journal,2014,258:119-127.
    [18]梁文俊,马琳,李坚,等.低温等离子体-催化联合技术去除甲苯的实验研究[J].北京工业大学学报,2014,40(2):315-320.
    [19]闫克平,李树然,冯卫强,等.高电压环境工程应用研究关键技术问题分析及展望[J].高电压技术,2015,41(8):2528-2544.
    [20] KIM H H.Nonthermal plasma processing for air-pollution control:a historical review,current issues,and future prospects[J].Plasma Processes and Polymers,2004,1(2):91-110.
    [21] VAN DURME J,DEWULF J,LEYS C,et al.Combining nonthermal plasma with heterogeneous catalysis in waste gas treatment:a review[J].Applied Catalysis B:Environmental,2008,78(3/4):324-333.
    [22] MAGUREANU M,PIROI D,MANDACHE N B,et al.In situ study of ozone and hybrid plasma Ag-Al catalysts for the oxidation of toluene:evidence of the nature of the active sites[J].Applied Catalysis B:Environmental,2011,104(1/2):84-89.
    [23] THAN Q H,PHAM H U,LE V T,et al.Application of atmosphric non-thermal plasma-catalysis hybrid system for air poluution control:toluene removal[J].Catalysis Today,2011,176(1):474-477.
    [24] CHIROKOV A,GUTSOL A,FRIDMAN A,et al.Analysis of two-dimensional microdischarge distribution in dielectric-barrier discharges[J].Plasma Sources Science&Technology,2004,13(4):623-635.
    [25] TRINH Q H,MOK Y S.Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds[J].Korean Journal of Chemical Engineering,2016,33(3):735-748.
    [26] FALKENSTEIN Z,COOGAN J J.Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures[J].Journal of Physics D:Applied Physics,1997,30(5):817-825.
    [27]吴军良.Mn/Ni/Cr基催化剂活性对低温等离子体催化氧化甲苯性能的影响[D].广州:华南理工大学,2014.
    [28] MCADAMS R,BEECH P,SHAWCROSS J T.Low temperature plasma assisted catalytic reduction of NOxin simulated marine diesel exhaust[J].Plasma Chemistry and Plasma Processing,2008,28(2):159-171.
    [29] ATKINSON R,BAULCH D L,COX R A,et al.Evaluated kinetic and photochemical data for atmospheric chemistry:volumeⅠ-gas phase reactions of Ox,HOx,NOxand SOxspecies[J].Atmospheric Chemistry and Physics,2004,4(6):1461-1738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700