典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy Consumption and Carbon Emission Analysis of Mesocarbon Microbeads Production for Lithium Batteries
  • 作者:高思雯 ; 龚先政 ; 孙博学
  • 英文作者:GAO Siwen;GONG Xianzheng;SUN Boxue;College of Materials Science and Engineering,Beijing University of Technology;National Engineering Laboratory for Industrial Big-data Application Technology;
  • 关键词:中间相炭微球 ; 生命周期评价 ; 碳排放 ; 绿色生产设计 ; 锂电池
  • 英文关键词:mesocarbon microbeads;;life cycle assessment;;carbon emission;;green production design;;lithium batteries
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:北京工业大学材料科学与工程学院;工业大数据应用技术国家工程实验室;
  • 出版日期:2018-11-25
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家重点研发计划(2018YFF0215706);; 北京市自然科学基金(2184098);; 工业大数据应用技术国家工程实验室建设项目(312000522303);; 国家自然科学基金创新研究群体项目(51621003)
  • 语种:中文;
  • 页:CLDB201822033
  • 页数:5
  • CN:22
  • ISSN:50-1078/TB
  • 分类号:187-191
摘要
中间相炭微球(MCMB)负极材料作为新型材料受到了社会的关注,同时其制造所带来的环境污染也逐渐增加。本工作针对锂电池MCMB材料开展了全生命周期能耗与碳排放研究,功能单位定义为生产1tMCMB负极材料产品,系统边界包括原料获取、能源供应与材料生产阶段,分析了MCMB材料全生命周期的能耗结构,辨识了碳排放的关键影响因素。能耗分析结果显示,1tMCMB负极材料的全生命周期能耗为149.37GJ,初级能耗结构为原煤(82.82%)、原油(11.03%)、天然气(6.15%),能源生产阶段对生命周期能耗的贡献度为80.81%。碳排放分析结果显示,生产1tMCMB负极材料的碳排放总量为11 824.61kg CO_2-eq,电力、中温沥青和焦炉煤气消耗量对碳排放计算结果的影响最为显著,调整能源结构是降低MCMB负极材料生产碳排放的有效手段。
        Mesocarbon microbeads(MCMB)anode material has recieved great social concern as a new material,and the environmental pollution caused by the production process is gradually increasing as also.In this research,energy consumption and carbon emission of MCMB anode material during the whole life cycle were quantified and analyzed.The functional unit was defined as 1 t MCMB anode material.The system boundary included raw material acquisition,energy supply and material production stage.The energy consumption structure of MCMB anode material was analyzed and the key factor of carbon emission was identified.The energy consumption analysis results showed that life cycle energy consumption of 1 tMCMB anode material is 149.37 GJ,the primary energy consumption structure is raw coal(82.82%),crude oil(11.03%)and natural gas(6.15%),and the energy production stage is the main consumer of all stages(energy production,resource production and product transportation),accounting for 80.81%to the total.The results of carbon emission analysis showed that the carbon emission of 1 tof MCMB anode material is 11 824.61 kg CO_2-eq.Electricity,soft pitch and coke oven gas were sensitive to carbon emissions,and adjusting the energy structure of MCMB was effective to reducing carbon emissions.
引文
1吴宇平,袁翔云,董超.锂离子电池:应用与实践[M].北京:化学工业出版社,2012:1.
    2 He D N.New energy and intelligent,SAIC decided the future[J].Automobile and New Powertrain,2018(1):17(in Chinese).何丹妮.新能源+智能化,上汽大通智定未来[J].汽车与新动力,2018(1):17.
    3 Mo K.Lithium-ion battery market size and expectations[J].Advanced Materials Industry,2014(10):3(in Chinese).墨柯.锂离子电池市场规模及预期[J].新材料产业,2014(10):3.
    4 Sun X L,Qin X J,Bo L M,et al.Advances of negative electrode material for lithium ion battery[J].Transactions of Nonferrous Metals Society of China,2011,63(2):147(in Chinese).孙学亮,秦秀娟,卜立敏,等.锂离子电池碳负极材料研究进展[J].中国有色金属学报,2011,63(2):147.
    5 Pehnt M.Life-cycle assessment of fuel cell stacks[J].International Journal of Hydrogen Energy,2001,26(1):91.
    6 Jager H,Frohs W,Banek M,et al.Carbon,4.Industrial Carbons[M].Ullmann’s Encyclopedia of Industrial Chemistry.Wiley-VCH Verlag GmbH&Co.KGaA,Germany,2010.
    7 Dunn,Jennifer B,James,et al.Material andenergy flows in the production of cathode and anode materials for lithium ion batteries[J].Acta Chemica Scandinavica,2015,49(24):44.
    8 Huang D D.Life cycle assessment and model instauration of green about second battery system[D].Beijing:Beijing University of Technology,2007(in Chinese).黄带弟.二次电池体系的生命周期评价及绿色模型建立[D].北京:北京工业大学,2007.
    9 Liu W.Life cycle assessment research of typical storage battery-a case study of lead acid battery and lithium ion battery[D].Shandong:Shandong University,2017(in Chinese).刘伟.典型蓄电池生命周期评价研究-以铅酸蓄电池和锂离子电池为例[D].山东:山东大学,2017.
    10 Wang Y X,Yu Y J,Liang Y H.et al.Carbon footprint comparison of lithium ion battery,nickel metal hydride battery and solar cell[J].Journal of Environmental Engineering,2015,33(s1):634(in Chinese).王译萱,郁亚娟,梁雨晗,等.锂离子电池与镍氢电池、太阳能电池碳足迹比较[J].环境工程,2015,33(s1):634.
    11 Wang C.Carbon footprint research of lithium ion secondary battery industry——Based on two case studies[D].Beijing:Beijing Institute of Technology,2015(in Chinese).王聪.锂离子二次电池行业的碳足迹研究[D].北京:北京理工大学,2015.
    12 中华人民共和国国家质量检测检验检疫总局,中国国家标准化管理委员会.GB/T 24533-2009锂离子电池石墨类负极材料[S].北京:中国标准出版社,2009.
    13 Miao Y L,Yang H Q,Yue M.Current status and development of power lithium-ion batteries and negative materials[J].Advanced Materials Industry,2010(10):28(in Chinese).苗艳丽,杨红强,岳敏.动力锂离子电池及其负材料的现状和发展[J].新材料产业,2010(10):28.
    14 张蕾,冯飞,涂中强.锅炉设备及运行[M].北京:化学工业出版社,2011:1.
    15 中华人民共和国建设部,中华人民共和国国家质量检测检验检疫总局.GB 50041-2008锅炉房设计规范[S].北京:中国标准出版社,2008.
    16 Ma L P.The localization research on road transportation in China for material life cycle assessment[D].Beijing:Beijing University of Technology,2007(in Chinese).马丽萍.材料生命周期评价基础之道路交通运输本地化研究[D].北京:北京工业大学,2007.
    17 Beijing University of Technology.Material Environmental Load Database—Sinocenter[EB/OL].http:∥cnmlca.bjut.edu.cn
    18 国家统计局.中国能源统计年鉴-2013[M].北京:中国统计出版社,2014.
    19 Xu B,Liang Y X,Yi M G,et al.Analysis of energy supply of coal tar distillation section[J].Coal Conversion,2009,32(2):28(in Chinese).徐兵,梁玉祥,易美桂,等.煤焦油蒸馏工序的能耗分析[J].煤炭转化,2009,32(2):28.
    20 肖瑞华,白金锋.煤化学产品工艺学[M].北京:冶金工业出版社,2008:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700