基于DIC方法的铝合金焊接接头拉伸性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY ON TENSILE PROPERTIES OF ALUMINUM ALLOY WELDING JOINT USING DIC METHOD
  • 作者:曹广龙 ; 陈亮 ; 任明法 ; 陈继乐 ; 张亚辉
  • 英文作者:CAO GuangLong;CHEN Liang;REN MingFa;CHEN JiLe;ZHANG YaHui;State Key Laboratory of Structural Analysis for industrial Equipment,Dalian University of Technology;Shenyang Aircraft Design Institute;Dept.of Engineering Mechanics,Dalian Maritime University;
  • 关键词:2219铝合金 ; 焊接接头 ; 数字图像相关法 ; 拉伸性能
  • 英文关键词:2219 aluminum alloys;;Welding joint;;Digital image correlation method;;Tensile properties
  • 中文刊名:JXQD
  • 英文刊名:Journal of Mechanical Strength
  • 机构:大连理工大学工业装备结构分析国家重点实验室;沈阳飞机设计研究所;大连海事大学工程力学系;
  • 出版日期:2019-06-06
  • 出版单位:机械强度
  • 年:2019
  • 期:v.41;No.203
  • 基金:国家重点基础研究发展计划(2014CB046506,2014CB049000);; 国家自然科学基金项目(11372058)资助~~
  • 语种:中文;
  • 页:JXQD201903014
  • 页数:6
  • CN:03
  • ISSN:41-1134/TH
  • 分类号:83-88
摘要
为准确表征铝合金焊接接头拉伸性能,针对2219铝合金搅拌摩擦焊焊接接头,采用数字图像相关(DIC)方法,测量焊接接头在拉伸载荷作用下的全场应变历程,得到铝合金焊接接头焊接区在拉伸时的连续屈服强度曲线。进而结合材料弹塑性本构模型,拟合焊接区内各点处材料本构关系,并分别构造了铝合金焊接接头焊缝区及热影响区力学性能连续变化的拟合函数,使之可以表达铝合金焊接接头焊接区内任意一点力学性能。最后利用所构造的力学性能函数模拟了铝合金焊接接头的拉伸过程,数值结果与试验相吻合,表明基于数字图像相关法的应变测量可以准确地表征其焊接区内的材料力学性能。
        In order to obtain the properties of 2219 aluminum alloy welding joint, this work uses digital image correlation(DIC) method, then the whole strain history within the welding zone of 2219 aluminum alloy friction stir welded joint subjected to tensile load is obtained, which in turn facilitates a continuous yield strength curve for the welding zone. The elastic-plastic constitutive equation is employed to describe mechanical properties of the welding zone with its parameters determined by the measured strain history. Then, the relationship between the distances from any location to the weld zone center and parameters in the equation can be established by fitting. Finally, a numerical simulation of welding joint subjected to tensile load is conducted using the mechanical properties given by the obtained relationship. The simulation results agree well with the experimental data. Therefore, it is proposed that the mechanical properties of the welding zone in a welding joint can be accurately obtained by analyzing its stress-strain curves measured by DIC method.
引文
[1]陶华,薛红前.铝合金超声疲劳行为研究[J].机械强度,2005,27(2):104-107.TAO Hua,XUE Hongqian.Study on the ultrasonic fatigue behavior of aluminum alloys[J].Journal of Mechanical Strength,2005,27(2):104-107(In Chinese).
    [2]朱春沅,李桓,黄超群,等.2219铝合金焊接残余应力分布分析[J].焊接学报,2017,38(11):32-36.ZHU ChunYuan,LI Huan,HUANG ChaoQun,et al.Study on residual stress distribution of 2219 aluminum alloy[J].Transactions of the China Welding Institution,2017,38(11):32-36(In Chinese).
    [3]LV Zongliang,LI Chong,WAN Long,et al.The influence of gradient mismatches on mechanical properties and microstructure of2219-T6 aluminum alloy VP-TIG joints[J].China Welding,2017,26(4):20-28.
    [4]HAN Wenfeng,YU Min,FANG Xifeng,et al.Effect of flame heating pass on microstructure and properties of A6N01 aluminum alloy welded joint[J].China Welding,2017,26(1):21-28.
    [5]Rao D,Huber K,Heerens A,et al.Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083friction stir welding joints[J].Materials Science&Engineering A,2013(565):44-50.
    [6]Ambriz R R,Chicot D,Benseddiq N,et al.Local mechanical properties of the 6061-T6 aluminum weld using micro-traction and instrumented indentation[J].European Journal of Mechanics,2011,30(3):307-315.
    [7]Rojek J,Hyrcza-Michalska M,Bokota A,et al.Determination of mechanical properties of the weld zone in tailor-welded blanks[J].Archives of Civil and Mechanical Engineering,2012,12(2):156-162.
    [8]Yazdipour A,Heidarzadeh A.Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints[J].Journal of Alloys and Compounds,2016(680):595-603.
    [9]Bartlett J L,Croom B P,Burdick J,et al.Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation[J].Additive Manufacturing,2018,22(8):1-12.
    [10]Rief T,Hausmann J,Motsch N.Development of a New Method for Residual Stress Analysis on Fiber Reinforced Plastics with Use of Digital Image Correlation[J].Key Engineering Materials,2017(742):660-665.
    [11]Hector L G,Chen Y L,Agarwal S,et al.Friction stir processed AA5182-O and AA6111-T4 aluminum alloy.Part 2:Tensile properties and strain field evolution[J].Journal of Materials Engineering and Performance,2007,16(4):404-417.
    [12]Lemmen H J K,Alderliseten R C,Pieters R R G M,et al.Yield strength and residual stress measurements on friction-stir-welded aluminum alloys[J].Journal of Aircraft,2010,47(5):1570-1583.
    [13]Khaled J.Fadhalah.Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063[J].Materials and Design,2014(53):550-560.
    [14]GB/T 228.1-2010,金属材料拉伸试验第1部分:室温试验方法[S].北京:中国标准出版社,2010:1-25GB/T 228.1-2010,Metallic materials-Tensile testing-Part 1:Method of test at room temperature[S].Beijing:China Standards Press,2010:1-25(In Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700