Mn_3O_4@SiO_2核壳磁性复合材料对钼(Ⅵ)的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption Properties of Mn_3O_4@SiO_2 Core-Shell Magnetic Composite for Mo(Ⅵ)
  • 作者:孙琳 ; 刘志雄 ; 罗文波 ; 罗忆婷 ; 李秉轩
  • 英文作者:SUN Lin;LIU Zhi-xiong;LUO Wen-bo;LUO Yi-ting;LI Bing-xuan;Materials Department of College of Physics, Mechanical and Electrical Engineering, Jishou University;The Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (the 2011 Plan of Hunan Province), Jishou University;National Demonstration Center for Experimental Chemistry Education, Jishou University;
  • 关键词:Mn_3O_4@SiO_2 ; 核壳结构 ; 复合材料 ; 纳米粒子 ; 吸附 ; 去除钼(Ⅵ) ; 水处理技术
  • 英文关键词:Mn_3O_4@SiO_2;;core-shell structure;;composite;;nanoparticles;;adsorption;;Mo (Ⅵ) removal;;water treatment technology
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:吉首大学物理与机电工程学院材料系;湖南省211计划锰锌钒工业技术协同创新中心吉首大学;国家级化学实验教学示范中心吉首大学;
  • 出版日期:2019-03-18 16:00
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51364009);; 湖南省自然科学基金(2015JJ2115);; 湘西州基础理论研究项目(2018SF5017);; 吉首大学大学生研究性学习和创新性实验计划(20160100)
  • 语种:中文;
  • 页:JXHG201908029
  • 页数:7
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:183-189
摘要
以一水硫酸锰和正硅酸乙酯为原料,采用氧化法和水解法制备了Mn_3O_4@SiO_2核壳结构磁性纳米材料,并研究了其对水溶液中钼(Ⅵ)的吸附效果。运用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、傅里叶变换红外光谱仪(FTIR)及磁强计(VSM)对Mn_3O_4@SiO_2核壳磁性复合材料进行了表征,并考察了溶液的初始pH、钼(Ⅵ)的初始质量浓度和温度对钼(Ⅵ)吸附量的影响。结果表明:在pH为2.8,温度25℃,钼(Ⅵ)初始质量浓度为160mg/L条件下,Mn_3O_4@SiO_2核壳结构磁性复合材料对Mo(Ⅵ)的饱和吸附量为145.35 mg/g;Mn_3O_4@SiO_2对钼(Ⅵ)的吸附过程符合Langmuir等温吸附模型,吸附动力学行为符合准二级动力学模型;吸附热力学分析表明,Mn_3O_4@SiO_2复合材料对钼(Ⅵ)的吸附行为是自发的放热过程。
        A core-shell magnetic nanocomposite Mn_3O_4@SiO_2 was prepared by oxidation and hydrolysis with manganese(Ⅱ) sulfate monohydrate and tetraethyl orthosilicate(TEOS) as raw materials, and the adsorption performance of Mn_3O_4@SiO_2 nanocomposite for Mo(Ⅵ) ions from aqueous solutions was investigated. The nanocomposite Mn_3O_4@SiO_2 was characterized by XRD, SEM, TEM, FTIR and magnetometer(VSM). The effects of initial p H of the solution, initial Mo(Ⅵ) ions concentration and temperature on the adsorption of Mo(Ⅵ) on nanocomposite Mn_3O_4@SiO_2 were studied. The result showed that the adsorption process gave a maximum adsorption of Mo(Ⅵ) capacity of 145.35 mg/g at pH 2.8,25 ℃ and Mo(Ⅵ) mass concentration 160 mg/L and could be described by the Langmuir adsorption isotherm model. This process followed the pseudo-second-order kinetics. The thermodynamic analysis revealed that the adsorption process of Mn_3O_4@SiO_2 composite for Mo(Ⅵ) was spontaneous and endothermic reaction.
引文
[1]Tu Y J,Chan T S,Tu H W,et al.Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles[J].Chemosphere,2016,148(4):452-458.
    [2]Ma Yingying(马英英),Zhang Lei(张磊).The influence of molybdenum on xanthine oxidase activity in mice[J].Feed Review(饲料博览),2016,(3):36-39.
    [3]Qian Dongxu(钱冬旭),Zhang Yalei(张亚雷),Zhou Xuefei(周雪飞),et al.Research progress of molybdenum polluted water treatment technology[J].Chemical Industry and Engineering Progress(化工进展),2016,35(2):617-623.
    [4]Brion-Roby R,Gagnona J,Nosratic S,et al.Adsorption and desorption of molybdenum(Ⅵ)in contaminated water using a chitosan sorbent[J].Journal of Water Process Engineering,2018,23(3):13-19
    [5]World Health Organization.Molybdenum in drinking-water[M].Geneva in Switzerland:WHO Press,2011:10-11.
    [6]Tu Y J,You C F,Chang C K,et al.XANES evidence of molybdenum adsorption onto novel fabricated nano-magnetic CuFe2O4[J].Chemical Engineering Journal,2014,244(10):343-349.
    [7]ChenYuan(陈远).Study on water pollution of lower reaches in zunyi Mo-Ni mine and its biotoxicity[J].Technological Innovation and Application(科技创新与应用),2012,(23):121-122.
    [8]Guo Zhijun(郭志军),Wang Yanqiu(王艳秋).Status and counter measures of Mo pollution in Wujintang reservoir[J].Environmental Science Guide(环境科学导刊),2007,26(4):59-60
    [9]Zhang Jie(张捷),Wang Xiaoqin(王小琴),Cao Huabin(曹华斌),et al.Effects of Mo pollution on livestock and poultry production in southern Jiangxi[J].Jiangxi Journal of Animal Husbandry and Veterinary(江西畜牧兽医杂志),2010,(5):8-12.
    [10]Hamed M M,Rizk H E,Ahmed I M.Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent[J].Journal of Molecular Liquids,2018,249(1):361-370.
    [11]Lou X W,Archer L A,Yang Z.Hollow micro-nanostructures:Synthesis and applications[J].Adv Mater,2008,20(21):3987-4019.
    [12]Yu Changwu(于常武),Gao Chao(高超),Wang Lin(王琳).Adsorption performance of molybdenum onto humus[J].Environmental Engineering(环境工程),2015,33(6):10-14.
    [13]Yu Changwu(于常武),Gao Chao(高超).Performance and mechanism studies of adsorption molybdenum(MoO42-)from waste by ulothrix[J].Environmental Pollution and Prevention(环境污染与防治),2015,37(7):55-60.
    [14]Jiang Debin(姜德彬),Yu Jing(余静),Cheng Qingfeng(程庆峰),et al.Preparation and characterization of comositite magnetic material Mn-Zn ferrite/SiO2[J].Environmental Protection of Chemical Industry(化工环保),2015,35(5):536-541.
    [15]Pu Shengyan(蒲生彦),Wang Kexin(王可心),Ma Hui(马慧),et al.Adsorption properties of magnetic chitosan hydrogelmicrospheres to Pb(Ⅱ)from aqueous solutions[J].China Environmental Science(中国环境科学),2018,38(4):1364-1370.
    [16]Li Jiapeng(李家朋).Preparation and magnetic characterization of nanoparticle[J].Science&Technology Vision(科技视界),2013,(24):322-323.
    [17]Huang Jianhui(黄建辉),Lin Wenting(林文婷),Xie Liyan(谢丽燕).Preparation and adsorption performance of porous spherical silica[J].Chinese Journal of Material Research(材料学报),2017,31(4):309-313.
    [18]Yang Y,Liu J,Li X,et al.Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites[J].Chemistry of Materials,2011,23(16):3676-3684.
    [19]Zhu Y,Fang Y,Borchardt L,et al.PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicle[J].Microporous&Mesoporous Materials,2011,141(1/2/3):199-206.
    [20]Pourhashem S,Vaezi M R,Rashidi A.Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings[J].Surface&Coatings Technology,2017,311:282-294.
    [21]Hu L X,Deng G H,Lu W C,et al.Peroxymonosulfate activation by Mn3O4/metal‐organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J].Chinese Journal of Catalysis,2017,38(8):1360-1372.
    [22]Xu J,Deng Y Q,Zhang X M,et al.Preparation,characterization,and kinetic study of a core-shell Mn3O4@SiO2 nanostructure catalyst for CO oxidation[J].ACS Catal,2014,4(11):4106-4115.
    [23]Yan X Y,Zhou Z G,Wang L,et al.Folate conjugated Mn3O4@SiO2nanoparticles for targeted magnetic resonance imaging in vivo[J].Materials Research Bulletin,2014,57(10):97-102.
    [24]Hu H,Dai A T,Sun J,et al.Aptamer-conjugated Mn3O4@SiO2core-shell nanoprobes for targeted magnetic resonance imaging[J].Nanoscale,2013,5(21):10447-10454.
    [25]Lang Ting(郎婷),Xu Dongdong(许东东),Yi Mengyu(易梦雨),et al.Preparation of nanosized Mn3O4 in oxidative medium of hydrogen peroxide[J].Applied Chemical Industry(应用化工),2013,43(12):2135-2137.
    [26]Ozkaya T,Baykal A,Kavas H,et al.A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation[J].Physica B:Condens Matter,2008,43(19/20):3760-3764.
    [27]Ishii M,Nakahira M,Yamanaka T.Infrared absorption spectra and caution distributions in(Mn,Fe)3O4[J].Solid State Commun,1972,11(1):209-212.
    [28]Zhao Hengqin(赵恒勤),Ning Yangkun(宁阳坤),Wang Wei(王威),et al.Experimental study on adsorption of molybdenum by D314resin[J].Mining and Metallurgical Engineering(矿冶工程),2018,38(1):81-87.
    [29]Liu Zhe(刘哲),Zhang Yuefei(张越非),Chi Ru’an(池汝安).Adsorption kinetics and thermodynamics of pueraia isoflavonoids on HPD-100 macroporous resin[J].Journal of Wuhan Institute of Technology(武汉工程大学学报),2015,37(4):17-22.
    [30]Tessier A,Compbell P.Sequential extraction proeedure for the speciation of partieulate traee metals[J].Anal Chem,1979,51(7):844-851.
    [31]Brion Roby R,Gagnona A J,Nostratic S,et al.Adsorption and desorption of molybdenum(Ⅵ)in contaminated water using a chitosan sorbent[J].Journal of Water Process Engineering,2018,23:13-19.
    [32]Saptiama I,Kaneti Y V,Suzuki,et al.Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption[J].Small,2018,14(21):1800474.
    [33]Tu Y J,Chan T S,Tu H W,et al.Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles[J].Chemosphere,2016,148(4):452-458.
    [34]Fumihiko O,Takehiro N,Naohito K.Adsorption capability of virgin and calcined wheat bran for molybdenum present in aqueous solution and elucidating the adsorption mechanism by adsorption isotherms,kinetics,and regeneration[J].Journal of Environmental Chemical Engineering,2018,6(4):4459-4466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700