基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method
  • 作者:彭宇 ; 丁选明 ; 肖杨 ; 楚剑 ; 邓玮婷
  • 英文作者:PENG Yu;DING Xuan-ming;XIAO Yang;CHU Jian;DENG Wei-ting;College of Civil Engineering, Chongqing University;Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University;
  • 关键词:钙质砂 ; 颗粒破碎 ; 染色标定 ; 颗粒图像分割 ; 累积破碎率
  • 英文关键词:calcareous sand;;particle breakage;;dyeing tracking method;;particle image segmentation;;accumulated particle breakage
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:重庆大学土木工程学院;重庆大学山地城镇建设与新技术教育部重点实验室;
  • 出版日期:2019-01-07 09:58
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.304
  • 基金:国家重点研发计划战略性国际科技创新合作重点专项(No.2016YFE0200100);; 国家自然科学基金(No.51622803,No.51578096)~~
  • 语种:中文;
  • 页:YTLX201907020
  • 页数:10
  • CN:07
  • ISSN:42-1199/O3
  • 分类号:200-209
摘要
针对混合粒径钙质砂中不同粒径颗粒绝对破碎量无法获得和现有破碎率难以考虑破碎重叠掩盖破碎量这两个问题开展研究。设计了粗砂、中砂、细砂颗粒集中分布的3种级配钙质砂试样,进行侧限压缩试验。对不同粒径区间钙质砂分别染成不同颜色,拍照获取各粒径区间钙质砂破碎信息;采用Image J软件进行彩色图像颗粒分割、二值化处理、统计各颜色颗粒面积,换算得各颜色颗粒破碎后含量;并提出考虑破碎重叠掩盖的试样累积破碎率指标B_a。结果表明,随压力增大及颗粒分布集中,试样的重叠掩盖破碎量增大。混合粒径钙质砂中的中间粒径(0.25~1.00mm)颗粒易于破碎,各粒径颗粒破坏模式以颗粒边角破碎为主;累积破碎率B_a值较相对破碎率B_r较大,与垂向压力对数值间满足线性关系,为颗粒破碎研究提供了新的思路。
        The main study of this paper focus on the problems that the absolute breakage amount of particles in a certain size range can not be acquired and the hidden breakage amount can not be considered in the particle breakage rate in a sample. Three kinds of calcareous sands, rich in coarse, medium and fine sands respectively, are subjected to the confined compression test. Particles with different sizes are dyed in different colors, and pictures contain the breakage information of particle in all certain particle size range are taken. Then, the Image J software is employed to segment and binarize these pictures and records the area of particles with different colors, which is used to calculated the content of the particles with different colors after failure. Finally, an accumulated particle breakage B_a, which considers the absolute breakage amount of particles in a certain size range, is proposed. Test results show that with the increase of pressure or the concentration of particle distribution, overlapping breakage of samples increases. Among these calcareous sand samples consisting of particles in different sizes, the sand in intermediate particle sizes(0.25-1 mm) is breakable, and edge and corner breakages are the dominant break pattern in the particles with different sizes. The accumulated particle breakage B_a is larger than the relative breakage B_r, and has a linear relationship with the logarithmic value of vertical pressure. The study of this paper provides a new method for the research on particle breakage.
引文
[1]刘汉龙,肖鹏,肖杨,等.MICP胶结钙质砂动力特性试验研究[J].岩土工程学报,2018,40(1):38-45.LIU Han-long,XIAO Peng,XIAO Yang,et al.Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J].Chinese Journal of Geotechnical Engineering,2018,40(1):38-45.
    [2]黄宏翔,陈育民,王建平,等.钙质砂抗剪强度特性的环剪试验[J].岩土力学,2018,39(6):2082-2088.HUANG Hong-xiang,CHEN Yu-min,WANG Jian-ping,et al.Ring shear tests on shear strength of calcareous sand[J].Rock and Soil Mechanics,2018,39(6):2082-2088.
    [3]朱长歧,陈海洋,孟庆山,等.钙质砂颗粒内孔隙的结构特征分析[J].岩土力学,2014,35(7):1831-1836.ZHU Chang-qi,CHEN Hai-yang,MENG Qing-shan,et al.Microscopic characterization of intra-pore structures of calcareous sands[J].Rock and Soil Mechanics,2014,35(7):1831-1835.
    [4]SHINJO T.Effects of particle breakage on compressibility of coral sand[J].Science Bulletin of the College of Agriculture University of Ryukyus,1999,46:83-92.
    [5]COOP M R,SORENSEN K K,FREITAS T B,et al.Particle breakage during shearing of a carbonate sand[J].Géotechnique,2004,54(3):157-163.
    [6]DONOHUE S,O'SULLIVAN C,LONG M.Particle breakage during cyclic triaxial loading of a carbonate sand[J].Géotechnique,2009,59(5):477-482.
    [7]吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响[J].岩土工程学报,1997,19(5):51-57.WU Jing-ping,CHU Yao,LOU Zhi-gang.Influence of particle breakage on deformation and strength properties of calcareous sand[J].Chinese Journal of Geotechnical Engineering,1997,19(5):51-57.
    [8]张家铭,汪稔,石祥锋,等.侧限条件下钙质砂压缩和破碎特性试验研究[J].岩石力学与工程学报,2005,24(18):3327-3331.ZHANG Jia-ming,WANG Ren,SHI Xiang-feng,et al.Compression and crushing behavior of calcareous sand under confined compression[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(18):3327-3331.
    [9]秦月,姚婷,汪稔,等.基于颗粒破碎的钙质沉积物高压固结变形分析[J].岩土力学,2014,35(11):3123-3128.QIN Yue,YAN Ting,WANG Ren,et al.Particle breakage-based analysis on deformation law of calcareous sediments under high-pressure consolidation[J].Rock and Soil Mechanics,2014,35(11):3123-28.
    [10]XIAO Y,LIU H,CHEN Q,et al.Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J].Acta Geotechnica,2017:1-8.
    [11]孙吉主,汪稔.三轴压缩条件下钙质砂的颗粒破裂过程研究[J].岩土力学,2003,24(5):822-825.SUN Ji-zhu,WANG Ren.Study on particle failure process of calcareous sand under triaxial compression[J].Rock and Soil Mechanics,2003,24(5):822-825.
    [12]陈清运,孙吉主,汪稔.钙质砂声发射特征的三轴试验研究[J].岩土力学,2009,30(7):2027-2030.CHEN Qing-yun,SUN Ji-zhu,WANG Ren.Triaxial experiment study of acoustic emission laws of calcareous sand[J].Rock and Soil Mechanics,2009,30(7):2027-2030.
    [13]张弼文.侧限条件下钙质砂的颗粒破碎特性研究[D].武汉:武汉理工大学,2014.ZHANG bi-wen.Particle breakage research of calcareous sand under confined compression[D].Wuhan:Wuhan University of Technology,2014.
    [14]王帅,雷学文,孟庆山,等.侧限条件下高压对钙质砂颗粒破碎影响研究[J].建筑科学,2017,33(5):80-87.WANG Shuai,LEI Xue-wen,MENG Qing-shan,et al.Influence study of high pressure on particle breakage of calcareous sand under confined compression[J].Building Science,2017,33(5):80-87.
    [15]曾健,宋高升.石材面清洗、着色与防护[J].建筑技术,2004,35(9):693-694.ZENG Jian,SONG Gao-sheng.Washing,coloring and protection of stone[J].Architecture Technology,2004,35(9):693-694.
    [16]张季如,张弼文,胡泳,等.粒状岩土材料颗粒破碎演化规律的模型预测研究[J].岩石力学与工程学报,2016,35(9):1898-1905.ZHANG Ji-ru,ZHANG Bi-wen,HU Yong,et al.Predicting the particle breakage of granular geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(9):1898-1905.
    [17]MAHY M,EYCKEN L,OOSTERLINCK A.Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV[J].Color Research and Application,2015,19(2):105-121.
    [18]王可,陆长德,乐万德,等.基于Lab均匀色彩空间的色彩调和系统[J].西北工业大学学报,2004,22(6):695-699.WANG Ke,LU Chang-de,YUE Wan-de,et al.Color harmony system based on Lab perceptual uniform color space[J].Journal of Northwestern Polytechnical University,2004,22(6):695-699.
    [19]胡月,容幸福,秦志钰.基于ImageJ对粘连彩色颗粒的分割[J].机械设计与制造,2013(3):105-107.HU Yue,RONG Xing-fu,QIN Zhi-yu.Segmentation of color adhesion particles based on ImageJ[J].Machinery Design and Manufacture,2013,3(3):105-107.
    [20]汪轶群,洪义,国振,等.南海钙质砂宏细观破碎力学特性[J].岩土力学,2018,39(1):199-206.WANG Yi-qun,HONG Yi,GUO Zhen,et al.Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J].Rock and Soil Mechanics,2018,39(1):199-206.
    [21]张家铭.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉:中国科学院武汉岩土力学研究所,2004.ZHANG Jia-ming.Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2004.
    [22]HARDIN B O.Crushing of soil particles[J].Journal of Geotechnical Engineering,1985,111(10):1177-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700