不同材料硬化模型模拟13MnNiMoR钢超厚圆筒对接环焊接残余应力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Residual Stress in Butt Girth Welding of Ultra-Thick 13MnNiMoR Steel Cylinder by Different Material Hardening Models
  • 作者:耿鲁阳 ; 涂善东 ; 巩建鸣 ; 张威
  • 英文作者:GENG Luyang;TU Shantung;GONG Jianming;ZHANG Wei;School of Mechanical and Power Engineering,Nanjing Tech University;School of Mechanical and Power Engineering,East China University of Science and Technology;
  • 关键词:13MnNiMoR钢 ; 硬化模型 ; 焊接残余应力 ; 塑性行为
  • 英文关键词:13MnNiMoR steel;;hardening model;;welding residual stress;;plastic behavior
  • 中文刊名:GXGC
  • 英文刊名:Materials for Mechanical Engineering
  • 机构:南京工业大学机械与动力工程学院;华东理工大学机械与动力工程学院;
  • 出版日期:2019-03-20
  • 出版单位:机械工程材料
  • 年:2019
  • 期:v.43;No.367
  • 基金:国家“863”计划项目(2012AA040306)
  • 语种:中文;
  • 页:GXGC201903013
  • 页数:7
  • CN:03
  • ISSN:31-1336/TB
  • 分类号:64-70
摘要
通过不同温度(20~800℃)低周疲劳试验研究了13MnNiMoR钢在循环载荷下的塑性变形行为;对低周疲劳试验数据进行拟合,得到不同温度下的硬化模型材料常数,分别采用混合硬化模型、等向硬化模型和随动硬化模型对13MnNiMoR钢超厚圆筒对接环焊接残余应力进行模拟和对比,并与X射线衍射测试结果进行对比。结果表明:13MnNiMoR钢是一种循环软化材料;不同硬化模型得到的环向残余应力预测结果的差异大于轴向残余应力的,且得到的内壁面残余应力预测结果的差异大于外壁面残余应力的;等向硬化模型高估了焊接残余应力,随动硬化模型则低估了残余应力,采用混合硬化模型预测得到的焊接残余应力与X射线衍射测试结果最接近,能够更准确地预测超厚板多层多道焊的焊接残余应力。
        The plastic behavior of 13 MnNiMoR steel under cyclic load was studied by low cyclic fatigue tests at different temperatures(20-800 ℃).The material constants of hardening model at different temperatures were obtained by fitting the low cyclic fatigue test data.The residual stress in butt girth welding of ultra-thick13 MnNiMoR steel cylinder was simulated by mixed hardening,isotropic hardening and kinematic hardening models,and compared.The simulated results were compared with the results measured by X-ray diffraction.The results show that the 13 MnNiMoR steel was a cyclic softening material.The difference in prediction for hoop residual stress by different hardening models was greater than that for axial residual stress,and the difference in prediction for residual stress on inner surface was bigger than that for residual stress on outer surface.The isotropic hardening model overestimated the residual stress,while the kinematic hardening model underestimated it.The welding residual stress predicted by the mixed hardening model was the most close to the test values by X-ray diffraction,indicating that the mixed hardening model can predict multi-layer and multi-pass welding residual stress of ultrathick plate.
引文
[1]叶琦.焊接技术[M].北京:化学工业出版社,2005:1-2.
    [2]HILL M R,PANONTIN T L.Effects of residual stress on brittle fracture testing[M]∥Fatigue and Fracture Mechanics.West Conshohocken,PA:ASTM International,1999:154-175.
    [3]HILL M R,PANONTIN T L.The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models[J].International Journal of Fracture,1996,82(4):317-333.
    [4]TAHERIA S,FATEMIB A.Fatigue crack behavior in power plant residual heat removal system piping including weld residual stress effects[J].International Journal of Fatigue,2016,101:244-252.
    [5]VAN BOVENA G,CHEN W,ROGGE R.The role of residual stress in neutral pH stress corrosion cracking of pipeline steels.Part I:Pitting and cracking occurrence[J].Acta Materialia,2007,55(1):29-42.
    [6]CHEN W,VAN BOVENA G,ROGGE R.The role of residual stress in neutral pH stress corrosion cracking of pipeline steels.Part II:Crack dormancy[J].Acta Materialia,2007,55(1):43-53.
    [7]JAMES M N.Residual stress influences on structural reliability[J].Engineering Failure Analysis,2011,18(8):1909-1920.
    [8]SONG S,DONG P,PEI X.A full-field residual stress estimation scheme for fitness-for-service assessment of pipe girth welds:Part I-Identification of key parameters[J].International Journal of Pressure Vessels and Piping,2015,126/127:58-70.
    [9]MITRA A,PRASAD N S,RAM G D J.Estimation of residual stresses in an 800 mm thick steel submerged arc weldment[J].Journal of Materials Processing Technology,2016,229:181-190.
    [10]WANG X,GONG J,ZHAO Y,et al.Numerical simulation to study the effect of arc travelling speed and welding sequences on residual stresses in welded sections of new ferritic P92 pipes[J].High Temperature Materials&Processes,2016,35(2):121-128.
    [11]MURNSKY O,SMITH M C,BENDEICH P J,et al.Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements[J].International Journal of Solids&Structures,2012,49(9):1045-1062.
    [12]潘家祯.压力容器材料实用手册---碳钢及合金钢[M].北京:化学工业出版社,2000:260-266.
    [13]张熹,陈延清,章军,等.13MnNiMoR钢板焊接性研究[J].电焊机,2012,42(7):17-21.
    [14]杨浩,曲锦波.热循环对13MnNiMoR钢焊接热影响区显微组织和韧性的影响[J].机械工程材料,2015,39(9):37-40.
    [15]LEMAITRE J,CHABOCHE J L.Mechanics of solid materials[M].Cambridge:Cambridge University Press,1990:228-233.
    [16]FREDERICK C O,ARMSTRONG P J.A mathematical representation of the multiaxial Bauschinger effect[J].Materials at High Temperatures,2007,24(1):1-26.
    [17]CHABOCHE J L,ROUSSELIER G.On the plastic and viscoplastic constitutive equations.Part I:Rules developed with internal variable concept[J].Journal of Pressure Vessel Technology,1983,105(2):153-158.
    [18]GOLDAK J,CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources[J].Metallurgical and Materials Transactions:B,1984,15(2):299-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700