超原子组装诱导的从绝缘体到半导体性质转变:一个理论研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Superatom-assembly induced transition from insulator to semiconductor:A theoretical study
  • 作者:王佳 ; 姜万润 ; 解伟誉 ; 王健鹏 ; 王志刚
  • 英文作者:Jia Wang;Wanrun Jiang;Weiyu Xie;Jianpeng Wang;Zhigang Wang;Institute of Atomic and Molecular Physics, Jilin University;Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University);
  • 英文关键词:superatom;;intermolecular interaction;;electronic structure;;density functional theory
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:Institute of Atomic and Molecular Physics, Jilin University;Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University);
  • 出版日期:2019-03-01
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (11674123 and 11374004)
  • 语种:英文;
  • 页:SCMA201903011
  • 页数:7
  • CN:03
  • ISSN:10-1236/TB
  • 分类号:134-140
摘要
硼基超原子通向功能材料的一个途径是组装.我们通过密度泛函理论研究了典型的硼基超原子B_(40)之间的相互作用.结果显示,在不同的低聚物中两个B_(40)之间不同的朝向方式会导致电子结构改变,但它们都部分保持了超原子性质.这是因为单体中靠内壳层的超原子轨道仍保持其在超原子中的电子局域性,而价壳层的超原子轨道由于超原子间成键或反键杂化而不能保持孤立超原子的轨道形状.在部分保持超原子性质的情况下, B_(40)超原子的组装可以相应实现从绝缘体到半导体的转变.带隙的减小是由"主量子数"为2的超原子轨道杂化成键导致的.我们的发现凸显了超原子间相互作用,会带来不同于单体的协同效应.因此,这一研究将有助于新型材料和器件的发展,尤其在以超原子为功能单元的组装材料研究方面将发挥积极作用.
        Assembly is an effective way to realize the functionalization potential of boron-based superatoms. Here we study the interaction between typical boron-based B_(40) superatoms using the density functional theory. Our results reveal that different oligomers constructed by modulating the arrangement of two B_(40) superatoms still retain some of the superatomic properties associated with their monomeric form despite possessing different electronic structures. While the inner shell superatomic orbitals maintain their electronic localization, the valence shell superatomic orbitals cannot maintain their original shape due to bonding and antibonding hybridization. Furthermore, the decreasing of band gap means that the B_(40) oligomers could achieve a transformation from insulators to semiconductors. The decreased band gap is possibly due to the disappearance of the superatomic orbitals with the principal quantum number of two. Our findings highlight that superatom–superatom interactions could induce synergy effects that differ from their monomers. Therefore, this research will aid in the development of new materials and devices that are constructed from superatoms.
引文
1 Kalsin AM,Fialkowski M,Paszewski M,et al.Electrostatic selfassembly of binary nanoparticle crystals with a diamond-like lattice.Science,2006,312:420-424
    2 Sharma J,Chhabra R,Cheng A,et al.Control of self-assembly of DNA tubules through integration of gold nanoparticles.Science,2009,323:112-116
    3 Shevchenko EV,Talapin DV,Kotov NA,et al.Structural diversity in binary nanoparticle superlattices.Nature,2006,439:55-59
    4 Daniel MC,Astruc D.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem Rev,2004,104:293-346
    5 Claridge SA,Castleman Jr.AW,Khanna SN,et al.Cluster-assembled materials.ACS Nano,2009,3:244-255
    6 Qian M,Reber AC,Ugrinov A,et al.Cluster-assembled materials:toward nanomaterials with precise control over properties.ACSNano,2010,4:235-240
    7 Zhang S,Zhang Y,Huang S,et al.Theoretical investigation of growth,stability,and electronic properties of beaded ZnO nanoclusters.J Mater Chem,2011,21:16905
    8 Zhang S,Zhang Y,Huang S,et al.Theoretical investigations of spsp2hybridized zero-dimensional fullerenynes.Nanoscale,2012,4:2839-2842
    9 Roy X,Lee CH,Crowther AC,et al.Nanoscale atoms in solid-state chemistry.Science,2013,341:157-160
    10 Kr?tschmer W,Lamb LD,Fostiropoulos K,et al.Solid C60:a new form of carbon.Nature,1990,347:354-358
    11 Liu F,Mostoller M,Kaplan T,et al.Evidence for a new class of solids.First-principles study of K(Al13).Chem Phys Lett,1996,248:213-217
    12 Reber AC,Khanna SN,Castleman AW.Superatom compounds,clusters,and assemblies:ultra alkali motifs and architectures.J Am Chem Soc,2007,129:10189-10194
    13 Khanna SN,Jena P.Assembling crystals from clusters.Phys Rev Lett,1992,69:1664-1667
    14 Castleman AW,Khanna SN,Sen A,et al.From designer clusters to synthetic crystalline nanoassemblies.Nano Lett,2007,7:2734-2741
    15 Yang H,Wang Y,Huang H,et al.All-thiol-stabilized Ag44and Au12Ag32nanoparticles with single-crystal structures.Nat Commun,2013,4:2422
    16 Champsaur AM,Yu J,Roy X,et al.Two-dimensional nanosheets from redox-active superatoms.ACS Cent Sci,2017,3:1050-1055
    17 Wang J,Yu T,Gao Y,et al.All-boron fullerene B40:a superatomic structure.Sci China Mater,2017,60:1264-1268
    18 Yu T,Gao Y,Xu D,et al.Actinide endohedral boron clusters:Aclosed-shell electronic structure of U@B40.Nano Res,2018,11:354-359
    19 Zhai HJ,Zhao YF,Li WL,et al.Observation of an all-boron fullerene.Nat Chem,2014,6:727-731
    20 Jin P,Hou Q,Tang C,et al.Computational investigation on the endohedral borofullerenes M@B40(M=Sc,Y,La).Theor Chem Acc,2015,134:13
    21 Bai H,Chen Q,Zhai HJ,et al.Endohedral and exohedral metalloborospherenes:M@B40(M=Ca,Sr)and M&B40(M=Be,Mg).Angew Chem Int Ed,2015,54:941-945
    22 Fa W,Chen S,Pande S,et al.Stability of metal-encapsulating boron fullerene B40.J Phys Chem A,2015,119:11208-11214
    23 Dong H,Lin B,Gilmore K,et al.B40fullerene:An efficient material for CO2capture,storage and separation.Curr Appl Phys,2015,15:1084-1089
    24 Gao G,Ma F,Jiao Y,et al.Modelling CO2 adsorption and separation on experimentally-realized B40fullerene.Comput Mater Sci,2015,108:38-41
    25 Dong H,Hou T,Lee ST,et al.New Ti-decorated B40fullerene as a promising hydrogen storage material.Sci Rep,2015,5:9952
    26 Lin B,Dong H,Du C,et al.B40fullerene as a highly sensitive molecular device for NH3detection at low bias:a first-principles study.Nanotechnology,2016,27:075501
    27 Yang Z,Ji YL,Lan G,et al.Design molecular rectifier and photodetector with all-boron fullerene.Solid State Commun,2015,217:38-42
    28 Shakerzadeh E,Biglari Z,Tahmasebi E.M@B40(M=Li,Na,K)serving as a potential promising novel NLO nanomaterial.Chem Phys Lett,2016,654:76-80
    29 Li Z,Yu G,Zhang X,et al.Bonding the superalkali M3O(M=Li and K):An effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40nanocage.Physica E-Low-dimensional Syst Nanostruct,2017,94:204-210
    30 Yang Y,Zhang Z,Penev ES,et al.B40cluster stability,reactivity,and its planar structural precursor.Nanoscale,2017,9:1805-1810
    31 Zheludev NI.The road ahead for metamaterials.Science,2010,328:582-583
    32 Grimme S,Antony J,Ehrlich S,et al.A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D)for the 94 elements H-Pu.J Chem Phys,2010,132:154104-154104
    33 Adamo C,Barone V.Toward reliable density functional methods without adjustable parameters:The PBE0 model.J Chem Phys,1999,110:6158-6170
    34 Perdew JP,Burke K,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett,1996,77:3865-3868
    35 Hehre WJ,Ditchfield R,Pople JA.Self-consistent molecular orbital methods.XII.Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules.J Chem Phys,1972,56:2257-2261
    36 He R,Zeng XC.Electronic structures and electronic spectra of allboron fullerene B40.Chem Commun,2015,51:3185-3188
    37 Frisch MJ,Trucks GW,Schlegel HB,et al.Gaussian 09,revision d.01.2013
    38 Morokuma K.Molecular orbital studies of hydrogen bonds.III.C=O···H-O hydrogen bond in H2CO···H2O and H2CO···2H2O.JChem Phys,1971,55:1236-1244
    39 Ziegler T,Rauk A.On the calculation of bonding energies by the Hartree Fock Slater method.Theoret Chim Acta,1977,46:1-10
    40 te Velde G,Bickelhaupt FM,Baerends EJ,et al.Chemistry with ADF.J Comput Chem,2001,22:931-967
    41 Delley B.From molecules to solids with the DMol3approach.JChem Phys,2000,113:7756-7764
    42 Kurakevych OO,Solozhenko VL.Rhombohedral boron subnitride,B13N2,by X-ray powder diffraction.Acta Crystlogr C Cryst Struct Commun,2007,63:i80-i82
    43 Beu TA,Onoe J,Hida A.First-principles calculations of the electronic structure of one-dimensional C60polymers.Phys Rev B,2005,72:155416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700