狗牙根诱变后代抗寒性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Cold Tolerance of Mutant Offspring of Bermudagrass
  • 作者:张笑笑 ; 王凯 ; 郭海林 ; 王蕊 ; 李丹丹 ; 李玲 ; 刘建秀 ; 郭爱桂
  • 英文作者:ZHANG Xiaoxiao;WANG Kai;GUO Hailin;WANG Rui;LI Dandan;LI Ling;LIU Jianxiu;GUO Aigui;Institute of Botany, Jiangsu Province and Chinese Academy of Sciences;
  • 关键词:狗牙根 ; 诱变后代 ; 电解质外渗法 ; 匍匐茎恢复实验 ; 抗寒性
  • 英文关键词:bermudagrass;;mutagenized progenies;;electrolyte leakage rate;;stolon regrowth experiments;;cold tolerance
  • 中文刊名:RDZX
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:江苏省中国科学院植物研究所(南京中山植物园);
  • 出版日期:2019-05-25
  • 出版单位:热带作物学报
  • 年:2019
  • 期:v.40
  • 基金:中国科学院战略性先导科技专项(No.XDA13020503);; 国家自然科学基金项目(No.31572155)
  • 语种:中文;
  • 页:RDZX201905007
  • 页数:6
  • CN:05
  • ISSN:46-1019/S
  • 分类号:45-50
摘要
通过电解质外渗法和匍匐茎恢复试验对‘阳江’狗牙根及其12个通过形态鉴定选出的坪用价值高且花序密度低的诱变后代进行抗寒性鉴定。电解质外渗法结果表明:诱变后代间的抗寒性具有较大差异,其叶片半致死温度(LT_(50))的变异范围为-7.6~-0.2℃(最低值与最大值相差7.4℃);参试材料抗寒性由强到弱依次为M18>M4>M26>M28> M22>阳江>M29>M31>M10>M37>M16>M1>M25,其中,有5个诱变后代抗寒性优于亲本,分别是M18、M4、M26、M28、M22。匍匐茎恢复实验结果表明:诱变后代M1、M22、M26、M31、M25在0℃和-5℃低温胁迫后的恢复生长率都高于亲本,恢复能力均优于亲本;M10、M37、M28在-5℃低温胁迫下,恢复生长能力低于亲本,抗寒性相对较弱,M16和M4在0℃和-5℃低温胁迫下,恢复生长率都低于亲本,抗寒性明显弱于亲本。综合2种方法鉴定结果显示:诱变后代M1、M25的恢复能力较强;M4、M28的叶片抗寒性较好,青绿期较长;M22、M18、M26的叶片抗寒性和匍匐茎恢复能力均较强;M29,M31的叶片抗寒性和匍匐茎恢复能力与亲本相似;M10、M16、M37的叶片抗寒性和匍匐茎恢复能力均较弱,整体抗寒性较弱。
        According to morphological identification, 12 mutant progenies of ‘Yangjiang' Bermudagrass with high turf value and low inflorescence density were selected to identify the cold tolerance by electrolyte leakage rate and stolon regrowth experiments. The electrolyte leakage rate showed that the variation range of LT50 ranged from-7.6 ℃ to-0.2 ℃, and the difference between the minimum and maximum values was 7.4 ℃. It was obvious that the cold resistance of the mutant offspring varied greatly. The order of cold resistance from strong to weak was M18>M4>M26> M28 >M22>Yangjiang>M29>M31>M10>M37>M16>M1>M25. Five of the mutants had better cold resistance than the parents, namely M18, M4, M26, M28 and M22. The results of stolon recovery test showed that the mutant growth rates of M1, M22, M26, M31 and M25 were higher than those of the parents after low temperature stress at 0 ℃and-5 ℃, and the recovery ability was better than that of the parents. Under -5 ℃low temperature stress, the ability to restore growth of M10, M37 and M28 was lower than that of the parents, and the cold resistance was relatively weak. Under low temperature stress of 0 ℃ and-5 ℃, the growth rates of M16 and M4 were lower than that of the parents, and the cold resistance was significantly weaker than that of the parents.The results of the two methods showed that the mutants M1 and M25 had strong recovery ability. M4 and M28 had better cold resistance and longer green period. M22, M18 and M26 had stronger cold resistance and stolon recovery ability. The cold resistance of the leaves of M29, M31 and the recovery ability of the stolons were similar to those of the parents. The cold resistance and the recovery ability of the stems of M10, M16 and M37 were weak, and the overall cold resistance was weak.
引文
[1]李会彬.河北野生狗牙根种质资源评价及其草坪建植与养护技术[D].保定:河北农业大学,2015.
    [2]Chan Z,Shi H.Improved abiotic stress tolerance of bermudagrass by exogenous small molecules[J].Plant signaling&behavior,2015,10(3):e991577.
    [3]Lu S,Wang Z,Niu Y,et al.Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress[J].Journal of the American Society for Horticultural Science,2008,133(3):360-366.
    [4]王婷,陈立坤,胡强,等.暖季型草坪草的抗寒性研究概况[J].草学,2018(1):7-11
    [5]范吉标.狗牙根耐寒生理及分子机制解析[D].武汉:中国科学院研究生院(武汉植物园),2016.
    [6]杨勇.狗牙根品种草坪质量评价及耐寒性生理生化机制研究[D].长沙:湖南农业大学,2015.
    [7]Fry J,Huang B.Applied turfgrass science and physiology[M].Hoboken,NJ,USA:John Wiley&Sons Inc,2004.
    [8]Anderson J A,Taliaferro C M,Martin D L.Longer exposure durations increase freeze damage to turf bermudagrasses[J].Crop Science,2003,43(3):973-977.
    [9]景艳杰.新疆狗牙根抗寒性评价[D].乌鲁木齐:新疆农业大学,2010.
    [10]郭海林,刘建秀,朱雪花,等.结缕草属杂交后代抗寒性评价[J].草地学报,2006,14(1):24-28.
    [11]Shashikumar K,Nus J L.Cultivar and winter cover effects on bermudagrass cold acclimation and crown moisture content[J].Crop Science,1993,33(4):813-817.
    [12]刘燕,刘建秀,王志勇,等.国产海雀稗种质资源抗寒性鉴定[J].热带作物学报,2016,37(4):665-671.
    [13]Li R,Bruneau A H,Qu R.Morphological mutants of St.Augustinegrass induced by gamma ray irradiation[J].Plant Breeding,2010,129(4):412-416.
    [14]Chen C,Lu S,Chen Y,et al.A gamma-ray-induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress[J].Journal of the American Society for Horticultural Science,2009,134(1):22-30.
    [15]宋华伟,刘颖,曹荣祥,等.ZS-SJZ结缕草与60Co-γ辐射诱变新品系的抗寒性比较[J].广东农业科学,2015,42(20):39-44.
    [16]郭海林,高雅丹,薛丹丹,等.结缕草属植物抗寒性的遗传分析[J].草业学报,2009,18(3):53-58.
    [17]Dunn J H,Bughrara S S,Warmund M R,et al.Low temperature tolerance of zoysiagrasses[J].Hort Science,1999,34(1):96-99.
    [18]朱根海,朱培仁.小麦抗冻性的季节变化以及温度对脱锻炼的效应[J].南京农业大学学报,1984,2:9-17.
    [19]莫惠栋.Logistic方程及其应用[J].江苏农学院学报,1983,4(2):53-57.
    [20]熊曦,吴彦奇,李西.狗牙根抗寒性测定技术[J].草业科学,2001(2):32-35,38.
    [21]White R H,Schmidt R E.Bermudagrass response to chilling temperatures as influenced by iron and benzyladenine[J].Crop Science,1989,29(3):768-773.
    [22]Davis D L,Gilbert W B.Winter hardiness and changes in soluble protein fractions of bermudagrass[J].Crop Science,1970,10(1):7-9.
    [23]Gatschet M J,Taliaferro C M,Anderson J A,et al.Cold acclimation and alterations in protein synthesis in bermudagrass crowns[J].Journal of the American Society for Horticultural Science,1994,119(3):477-480.
    [24]郭海林,刘建秀,郭爱桂,等.杂交狗牙根诱变后代综合评价[J].草地学报,2008,16(2):145-149.
    [25]张彦芹,贾炜珑,杨丽莉,等.高羊茅耐寒突变体的诱发与鉴定[J].草地学报,2006,14(2):124-128.
    [26]王志勇.国内外狗牙根种植资源多样性比较及优良品系抗性评价[D].南京:南京农业大学,2009.
    [27]Anderson J A,Wu Y Q.Freeze tolerance of forage bermudagrasses[J].Grass and Forage Science,2011,66(3):449-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700