不同生态修复手段对硝态氮和铵态氮脱除机制的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Ecological Restoration Methods on the Removal Mechanisms of Nitrate and Ammonium
  • 作者:王昱 ; 王浩
  • 英文作者:WANG Yu;WANG Hao;Jiangsu Key Laboratory of Environmental Engineering,Jiangsu Provincial Academy of Environmental Science;State Key Laboratory of Pollutantion Control and Resources Reuse, School of the Environment, Nanjing University;
  • 关键词:河道 ; ~(15)NO_3~- ; ~(15)NH_4~+ ; 稳定~(15)N同位素配对 ; 反硝化速率 ; 植物吸收速率
  • 英文关键词:River-way;;~(15)NO_3~- and ~(15)NH_4~+;;Stable ~(15)N isotope pairing technique;;Denitrification rates;;Plant uptake rates
  • 中文刊名:JSHJ
  • 英文刊名:Environmental Science and Technology
  • 机构:江苏省环境科学研究院江苏省环境工程重点实验室;南京大学环境学院污染控制与资源化研究国家重点实验室;
  • 出版日期:2017-10-15
  • 出版单位:环境科技
  • 年:2017
  • 期:v.30;No.157
  • 基金:国家水体污染控制与治理重大专项(2013ZX07101-014)
  • 语种:中文;
  • 页:JSHJ201705001
  • 页数:5
  • CN:05
  • ISSN:32-1786/X
  • 分类号:5-9
摘要
采集入贡湖亲水河原位底泥柱芯、上覆水及伊乐藻样品,搭建室内模拟实验,探究不同生态修复手段下硝氮和铵氮的脱除机制。采用~(15)N同位素配对技术,测定分析了裸泥组A、脱氮微生物(INCB)组B、伊乐藻组C和INCB~+伊乐藻组(D)中反硝化速率及植物吸收速率。结果表明,处理组D中反硝化速率最高,在添加~(15)NO_3~-和~(15)NH_4~+的处理组分别为258.6和156.49μmol/(m~2·h)。对比添加~(15)NO_3~-的处理组,添加~(15)NH_4~+的处理组中伊乐藻吸收速率大约是~(15)NO_3~-的2倍,而添加~(15)NO_3~-处理组中反硝化速率约是添加~(15)NH_4~+的处理组1.5倍。沉水植物在吸收氮素的同时促进了微生物脱氮作用,与植物吸收相比,反硝化脱氮是氮素脱除的主要途径。INCB和沉水植物的联合应用,提高了河道水体氮素的去除速率,促进河道水体净化。
        Undisturbed sediment cores, surface water and Elodea nuttallii were collected from Qinshui River in Gonghu Bay.And a simulation experiment in laboratory was carried out to study the effects of different ecological restoration methods on the removal mechanisms of nitrate-N and ammonia-N. The stable~(15)N isotope pairing technique was used to investigate the rates of denitrification and plant uptake among four different treatment groups(Treatment A: bare sediment, Treatment B: INCB,Treatment C: E. nuttallii, Treatment D: INCB+E. nuttallii). The experiment results indicated that Treatment D with~(15)NO_3~-and~(15)NH_4~+had the highest denitrification rate of 258.6 and 156.49 μmol/(m~2·h~1), respectively. Compared with the group with~(15)NO_3~-added, the absorption rate of~(15)NH_4~+in E. nuttallii was about 2 times faster than that of~(15)NO_3~-, while the denitrification rate in group with~(15)NO_3~-added was about 1.5 times higher than that in~(15)NH_4~+group. In addition of absorbing nitrogen, submerged plants promote microbial nitrogen removal, and denitrification is the main pathway of nitrogen removal compared with plant absorption. The combined use of INCB and submerged macrophytes enhanced the removal rate of nitrogen in river water and promoted the purification of river water.
引文
[1]LEPISTO A,GRANLUND K,KORTELAINEN P,et al.Nitrogen in river basins:sources,retention in the surface waters and peatlands,and fluxes to estuaries in Finland[J].Science of the total environment,2006,365(1/3):238-259.
    [2]PASTUSZAK M,KOWALKOWSKI T,KOPINSKI J,et al.Impact of forecasted changes in Polish economy(2015 and 2020)on nutrient emission into the river basins[J].Science of the total environment,2014,493:32-43.
    [3]GALLO E L,MEIXNER T,AOUBID H,et al.Combined impact of catchment size,land cover,and precipitation on streamflow and total dissolved nitrogen:a global comparative analysis[J].Global biogeochemical cycles,2015,29(7):1 109-1 121.
    [4]周元清,李秀珍,唐莹莹,等.不同处理水芹浮床对城市河道黑臭污水的脱氮效果及其机理研究[J].环境科学学报,2011,31(10):2 192-2 198.
    [5]张列宇,饶本强,熊瑛,等.人工湿地黑臭水体处理系统微生物脱氮机理研究[J].水生生物学报,2010,34(2):256-261.
    [6]潘静赟,李正魁.生物填料-沉水植物联用在河道水强化处理中的应用研究[J].环境工程学报,2012,6(9):2 963-2 968.
    [7]殷红桂,唐子夏,唐可欣,等.大型水生植物在水质修复过程中的应用现状及发展[J].环境科技,2017,30(1):67-70.
    [8]刘丹丹,李正魁,叶忠香,等.伊乐藻和氮循环菌技术对太湖氮素吸收和反硝化的影响[J].环境科学,2014,35(10):3 764-3 768.
    [9]LI Z K,PU P M,HU W P,et al.Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria[J].Nuclear science and techniques,2002,13(2):115-118.
    [10]徐徽,张路,商景阁,等.太湖梅梁湾水土界面反硝化和厌氧氨氧化[J].湖泊科学,2009,21(6):775-781.
    [11]NIELSEN L P.Denitrification in sediment determined from nitrogen isotope pairing[J].FEMS microbiology letters,1992,86(4):357-362.
    [12]DUGDALE R C,WILKERSON F P.The use of15N to measure nitrogen uptake in eutrophic oceans:experimental considerations[J].Limnongy and oceanography,1986,31(4):673-689.
    [13]CHRISTENSEN P B,REVSBECH N P,SAND JENSEN K.Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte littorella-uniflora(L)ascherson[J].Plant physiology,1994,105(3):847-852.
    [14]王易超,李正魁,周莉,等.伊乐藻-固定化氮循环菌技术入湖河道修复研究[J].中国环境科学,2012,32(3):510-516.
    [15]TOET S,HUIBERS L H F A,VAN LOGTESTIJN R S P,et al.Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent[J].Hydrobiologia,2003,501(1/3):29-44.
    [16]SOANA E,BARTOLI M.Seasonal variation of radial oxygen loss in Vallisneria spiralis L.:an adaptive response to sediment redox[J].Aquatic botany 2013,104:228-232.
    [17]O’MEARA T,THOMPSON S P,PIEHLER M F.Effects of shoreline hardening on nitrogen processing in estuarine marshes of the U.S.mid-Atlantic coast[J].Wetl ecol manag,2014,23(3):385-394.
    [18]TOET S,HUIBERS L H F A,VAN LOGTESTIJN R S P,et al.Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent[J].Hydrobiologia,2003,501(1/3):29-44.
    [19]LI C,REN H Q,XU M,et al.Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells(MFCs)and its microbial community analysis[J].Bioresource technology,2014,175C:545-552.
    [20]Peipoch M,Gacia E,Blesa A,et al.(2013)Contrasts among macrophyte riparian species in their use of stream water nitrate and ammonium:insights from15N natural abundance[J].Aquatic sciences,2013,76(2):203-215.
    [21]MATHESON F E,NGUYEN M L,COOPER A B,et al.Fate of15N-nitrate in unplanted,planted and harvested riparian wetland soil microcosms[J].Ecological engineering,2002,19(4):249-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700