浅析共沉淀法合成锂电池层状Li-Ni-Co-Mn-O正极材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A preliminary analysis on the synthesis of layered Li-Ni-Co-Mn-O cathode material by co-precipitation method
  • 作者:张翔 ; 王春雷 ; 孔继周 ; 周飞 ; 唐州 ; 李军秀
  • 英文作者:ZHANG Xiang;WANG Chunlei;KONG Jizhou;ZHOU Fei;TANG Zhou;LI Junxiu;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics;Jiangsu Cobalt Nickel Metal Co.,Ltd.;
  • 关键词:锂离子电池 ; Li-Ni-Co-Mn-O ; 共沉淀 ; 颗粒过程 ; 热力学 ; 工艺参数
  • 英文关键词:lithium-ion battery;;Li-Ni-Co-Mn-O;;co-precipitation;;particulate processes;;thermodynamics;;process parameters
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:南京航空航天大学机械结构强度与振动国家重点实验室;江苏凯力克钴业股份有限公司;
  • 出版日期:2014-11-05
  • 出版单位:化工进展
  • 年:2014
  • 期:v.33;No.278
  • 基金:江苏省科技成果转化项目(BA2013142);; 江苏省自然科学基金(BK20130800);; 航天SAST基金(2013-YF-2059)项目
  • 语种:中文;
  • 页:HGJZ201411028
  • 页数:9
  • CN:11
  • ISSN:11-1954/TQ
  • 分类号:182-190
摘要
锂电池层状Li-Ni-Co-Mn-O正极材料凭借其低成本、高容量的优势,已实现产业化并开始取代传统正极材料LiCoO2。合成该材料的方法很多,共沉淀法因经济性与稳定性受到人们亲睐。本文定性地分析了共沉淀法合成Li-Ni-Co-Mn-O涉及的颗粒过程及热力学过程,详细探讨了共沉淀的工艺参数,如陈化时间、反应温度、pH值等对产物结构、性能的影响规律。根据分析与统计结果,明确了部分工艺参数的取值范围,提出了"有效加料速度"的概念,并引出完整描述加料过程所需要的全部变量,指出合成择优取向的一次颗粒、探索利于共沉淀的流体环境是下一步的研究方向。
        Due to its low cost and high capacity, layered Li-Ni-Co-Mn-O has already been industrialized and partially replaced traditional LiCoO2 as cathode material for commercial lithium-ion battery. Among various synthetic methods for Li-Ni-Co-Mn-O,co-precipitation becomes an attractive choice because of its low cost and stability. In this paper,we qualitatively analyzed the particulate and thermodynamic processes of co-precipitation method. Then influences of process parameters(aging time,temperature,pH value,etc) on the structure and performance of product were discussed in detail. The ranges of certain process parameters were confirmed according to statistics and the analyses conducted before. The concept of effective feeding rate was put forward,with which a series of variables were derived for a complete description of feeding process. Further researches on the synthesis of primary particles with preferred orientation and the investigation of appropriate fluid environment for co-precipitation should be conducted in the future.
引文
[1]Armstrong A R,Bruce P G.Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J].Nature,1996,381(6582):499-500.
    [2]魏巍,王久林,杨军.锂离子电池锡基负极材料的研究进展[J].化工进展,2010,29(1):80-87.
    [3]Yang Z,Yang W,Evans D G,et al.Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material[J].Electrochem.Commun.,2008,10(8):1136-1139.
    [4]王兆翔,陈立泉,黄学杰.锂离子电池正极材料的结构设计与改性[J].化学进展,2011,23(2):284-301.
    [5]Wilcox J,Patoux S,Doeff M.Structure and electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2(M=Ti,Al,Fe)positive electrode materials[J].J.Electrochem.Soc.,2009,156(3):A192-A198.
    [6]任崇,孔继周,周飞,等.锂离子电池富锂锰基正极材料的研究进展[J].材料导报,2013,27(13):29-35.
    [7]陆杰,王静康.反应结晶过程研究(Ⅱ)——二次过程及机理分析[J].化学工业与工程,1999,16(1):58-61.
    [8]邓胜男.锂离子电池正极材料Li1.2Mn0.54Ni0.13Co0.13O2的制备及改性研究[D].大连:大连理工大学,2011.
    [9]Schmok K.Modelling of mechanism of agglomeration of KCl crystallization[J].Cryst.Res.Technol.,1988,23(8):967-972.
    [10]彭美勋.球形氢氧化镍的微结构形成机理与电化学性能[D].长沙:中南大学,2004.
    [11]Wang D,Belharouak I,Koenig G M,et al.Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes[J].J.Mater.Chem.,2011,21(25):9290-9295.
    [12]胡东阁,王张志,刘佳丽,等.前驱体对三元正极材LiNi0.5Co0.2Mn0.3O2性能的影响[J].电化学,2013,19(3):204-209.
    [13]Luo X,Wang X,Liao L,et al.Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation[J].J.Power Sources,2006,158(1):654-658.
    [14]Lee K S,Myung S T,Moon J S,et al.Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation[J].Electrochim.Acta,2008,53(20):6033-6037.
    [15]郭孝东,钟本和,唐艳,等.一次粒径和二次粒径对LiFePO4性能的影响[J].高校化学工程学报,2013,27(5):884-888.
    [16]Wang M,Yang Y,Zhang Y.Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density[J].Nanoscale,2011,3(10):4434-4439.
    [17]Dai Y,Cai L,White R E.Capacity fade model for spinel LiMn2O4Electrode[J].J.Electrochem.Soc.,2013,160(1):A182-A190.
    [18]Kim M G,Jo M,Hong Y S,et al.Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J].Chem.Commun.,2009(2):218-220.
    [19]苏继桃,苏玉长,赖智广,等.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析[J].硅酸盐学报,2006,34(6):695-698.
    [20]肖新颜,叶永清.共沉淀法合成Ni1/3Col/3Mn1/3(OH)2的热力学分析[J].华南理工大学学报:自然科学版,2010,38(4):30-34.
    [21]Shi S J,Mai Y J,Tang Y Y,et al.Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials[J].Electrochim.Acta,2012,77:39-46.
    [22]Wang J,Yuan G,Zhang M,et al.The structure,morphology,and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2(0.1≤x≤0.7)cathode materials[J].Electrochim.Acta,2012,66:61-66.
    [23]Liu J,Chen H,Xie J,et al.Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes[J].J.Power Sources,2014,251:208-214.
    [24]Wang Y,Sharma N,Su D,et al.High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries[J].Solid State Ionics,2013,233:12-19.
    [25]Lu H,Zhou H,Svensson A M,et al.High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries[J].Solid State Ionics,2013,249-250:105-111.
    [26]Huang Z,Gao J,He X,et al.Well-ordered spherical LiNixCo1-2xMnxO2 cathode materials synthesized from cobolt concentration-gradient precursors[J].J.Power Sources,2012,202:284-290.
    [27]Xiang X,Li X,Li W.Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery[J].J.Power Sources,2013,230:89-95.
    [28]Du K,Huang J,Cao Y,et al.Study of effects on LiNi0.8Co0.15Al0.05O2cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries[J].J.Alloys Compd.,2013,574:377-382.
    [29]Yang S,Wang X,Yang X,et al.Influence of preparation method on structure,morphology,and electrochemical performance of spherical Li[Ni0.5Mn0.3Co0.2]O2[J].J.Solid State Electrochem.,2012,16(8):2823-2836.
    [30]Liu Y,Lv J,Zhu G,et al.Improvement of the first coulomb efficiency and rate performance of Li1.5Ni0.25Mn0.75O2.5 with spinel LiNi0.5Mn1.5O4 doping[J].Ionics,2013,19(10):1335-1340.
    [31]Singh G,Thomas R,Kumar A,et al.Electrochemical and structural investigations on ZnO treated 0.5Li2MnO3-0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery[J].J.Electrochem.Soc.,2012,159(4):A470-A478.
    [32]Zheng J,Shi W,Gu M,et al.Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2[J].J.Electrochem.Soc.,2013,160(11):A2212-A2219.
    [33]Hu C,Guo J,Wen J,et al.Preparation and electrochemical performance of LiNi0.5Mn0.5O2-xFx(0≤x≤0.04)cathode material synthesized with hydroxide co-precipitation for lithium ion batteries[J].J.Alloys Compd.,2013,581:121-127.
    [34]Wu Y,Ming J,Zhuo L,et al.Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance[J].Electrochim.Acta,2013,113:54-62.
    [35]Yang X,Wang X,Zou G,et al.Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries[J].J.Power Sources,2013,232:33.
    [36]Zhang S,Deng C,Fu B L,et al.Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method[J].Powder Technol.,2010,198(3):373-380.
    [37]Wang T,Liu Z H,Fan L,et al.Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation[J].Powder Technol.,2008,187(2):124-129.
    [38]Cho T H,Shiosaki Y,Noguchi H.Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method[J].J.Power Sources,2006,159(2):1322-1327.
    [39]Yang S,Wang X,Chen Q,et al.Effects of complexants on[Ni1/3Co1/3Mn1/3]CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2[J].J.Solid State Electrochem.,2012,16(2):481-490.
    [40]Kong J Z,Zhai H F,Ren C,et al.High-capacity LiNi0.5Co0.2Mn0.3O2lithium-ion battery cathode synthesized using a green chelating agent[J].J.Solid State Electrochem.,2014,18(1):181-188.
    [41]Yoon J H,Bang H J,Prakash J,et al.Comparative study of Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J].Mater.Chem.Phys.,2008,110(2):222-227.
    [42]Lee M H,Kang Y J,Myung S T,et al.Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J].Electrochim.Acta,2004,50(4):939-948.
    [43]Deng C,Liu L,Zhou W,et al.Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2prepared by hydroxide co-precipitation method[J].Electrochim.Acta,2008,53(5):2441-2447.
    [44]胡国荣,刘艳君,彭忠东,等.控制结晶法合成球形正极材料LiNi0.8Co0.2O2及其电化学性能[J].中国有色金属学报,2007,17(1):2008.
    [45]雷杰.锂离子电池正极材料LiNi0.5Mn0.3Co0.2O2的研究[D].哈尔滨:哈尔滨工业大学,2013.
    [46]Zhang Y,Cao H,Zhang J,et al.Synthesis of LiNi0.6Co0.2Mn0.2O2cathode material by a carbonate co-precipitation method and its electrochemical characterization[J].Solid State Ionics,2006,177(37-38):3303-3307.
    [47]Noh M,Cho J.Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2cathode materials for high rate lithium batteries via co-precipitation method[J].J.Electrochem.Soc.,2013,160(1):A105-A111.
    [48]彭美勋,沈湘黔,危亚辉.搅拌型式对球形Ni(OH)2物理性质的影响[J].硅酸盐通报,2008,27(2):254-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700