锆基弥散微封装燃料在稳态运行条件下的失效机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Failure Mechanism of M3 Fuel under Steady-State Operation Conditions
  • 作者:李垣明 ; 唐昌兵 ; 余红星 ; 辛勇 ; 陈平 ; 周毅
  • 英文作者:Li Yuanming;Tang Changbing;Yu Hongxing;Xin Yong;Chen Ping;Zhou Yi;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China;
  • 关键词:M3燃料 ; 失效机理 ; LWR ; 辐照-热-力耦合
  • 英文关键词:M3 fuel;;Failure mechanism;;LWR;;Irradiation-thermal-mechanical coupling
  • 中文刊名:HDLG
  • 英文刊名:Nuclear Power Engineering
  • 机构:中国核动力研究设计院核反应堆系统设计技术重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:核动力工程
  • 年:2019
  • 期:v.40;No.232
  • 语种:中文;
  • 页:HDLG201901036
  • 页数:6
  • CN:01
  • ISSN:51-1158/TL
  • 分类号:161-166
摘要
为实现锆基弥散微封装燃料(M3燃料)的优化设计,进一步提升其在轻水堆(LWR)运行环境下的可靠性,需对其在稳态运行条件下的失效机理进行研究。本研究借助于ABAQUS有限元软件,通过二次开发建立了M3燃料的辐照-热-力耦合性能三维数值模拟分析方法,并基于此分析方法对M3燃料在稳态运行条件下的失效机理进行了研究。研究结果表明,稳态运行期间M3燃料的失效主要以辐照初期内致密热解碳层(IPyC层)的失效、辐照中后期疏松热解碳层(Buffer层)与IPyC层分开再接触后导致的碳化硅层失效为主。该研究结果可为后续M3燃料的优化设计提供指导。
        In order to optimize the design of M3 fuel and further improve its reliability in LWR environment, it is necessary to research its failure mechanism under steady-state operation conditions. Based on the ABAQUS software, a 3 D numerical simulation analysis method for the irradiation-thermal-mechanical coupling behavior of M3 fuel was established by the way of secondary development. With the help of this established analytical method, the failure mechanism of M3 fuel under steady-state operation conditions was carried out. According to the research results, during the steady-state operation conditions, the failure mechanism of M3 fuel is mainly dominated by the failure of IPyC layer in the initial irradiation and the failure of SiC layer caused by the contact of Buffer layer and IPy C layer. This research results could provide guidance for the optimization design of M3 fuel.
引文
[1]Terrani K A,Bell G L,Kiggans J,et al.Metal matrix microencapsulated fuel technology for LWR applications[R].Oak Ridge,TN(United States):Oak Ridge National Lab(ORNL),2012.
    [2]Collin B P.Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code[J].Journal of Nuclear Materials,2014,451(1):65-77.
    [3]Hales J D,Williamson R L,.Novascone S R,et al.Multidimensional multiphysics simulation of nuclear fuel behavior[J].Journal of Nuclear Materials,2012,423(1):149-163.
    [4]Mac Donald P E,Thompson L B.MATPRO:A Vhandbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R].Idaho Falls,Idaho(USA):Idaho National Engineering Lab,1976.
    [5]Lucuta P G,Matzke H,Hastings I J.A pragmatic approach to modeling thermal conductivity of irradiated UO2 fuel:review and recommendations[J].Journal of Nuclear Materials,1996,232(2):166-180.
    [6]Hales J D,Williamson R L,Novascone S R,et al.Multidimensional multiphysics simulation of TRISOparticle fuel[J].Journal of Nuclear Materials,2013,443(1-3):531-543.
    [7]Snead L L,Nozawa T,Katoh Y,Byun T,Kondo S,Petti D A.Handbook of SiC properties for fuel performance modeling[J].Journal of Nuclear Materials,2007,371(1):329-377.
    [8]Proksch E,Strigl A,Nabielek H.Productionof carbon monoxide during burnup of UO2 kerneled HTR fuel particles[J].Journal of Nuclear Materials,1982,107:280-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700