固溶处理对J3钢组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of solution treatment on microstructure and properties of J3 steel
  • 作者:李婷 ; 王福明
  • 英文作者:Li Ting;Wang Fuming;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:奥氏体不锈钢 ; 固溶处理 ; 敏化处理 ; 组织 ; 力学性能
  • 英文关键词:austenitic stainless steel;;solution treatment;;sensitization treatment;;microstructure;;mechanical properties
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:北京科技大学冶金与生态工程学院;
  • 出版日期:2018-09-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.493
  • 基金:国家自然科学基金(51674020);; 国家重点研发计划资助项目(2016YFB0300102)
  • 语种:中文;
  • 页:JSRC201809026
  • 页数:7
  • CN:09
  • ISSN:11-1860/TG
  • 分类号:118-124
摘要
研究了不同热处理制度对J3系列奥氏体不锈钢组织和力学性能的影响。结果表明:随着固溶温度的升高,J3钢的强度以及断后伸长率先增加后下降;而随着保温时间的增加,J3钢的强度、硬度值和屈强比均下降,断后伸长率提高。J3钢最佳固溶处理方式为1050℃×90 min。J3钢经1050℃×30 min固溶处理后,第二相的析出以及铜元素在晶界的偏聚弱化了晶间结合力,出现沿晶断裂。保温时间增加后,J3钢会呈现明显的韧性断裂,明显提高。J3钢的敏感析出温度为800℃,此时晶界最粗,并有颗粒状析出相在晶界析出,延长敏化处理时间后,析出相布满整个晶界。
        Effect of heat treatment on microstructure and properties of J3 austenitic stainless steel was studied. The results show that with the increase of the solution treatment temperature,the strength and the elongation of J3 steel increase at first and then decrease. With the increase of holding time,the strength,the hardness value and the yield ratio of J3 steel decrease,and the elongation is continuously increased. The optimum solution treatment method of J3 steel is 1050 ℃ × 90 min. After 1050 ℃ × 30 min heat treatment for J3 steel,the precipitation of the second phases and the segregation of Cu at grain boundary can weaken the intergranular binding force,resulting in the occurrence of intergranular fracture. While prolonging the holding time,J3 steel shows the form of toughness fracture,and resulting in the increase of toughness. The sensitive precipitation temperature of J3 steel is 800 ℃. Therefor the grain boundary is the widest,and the granular phase precipitates. When extended the sensitizing time at 800 ℃,the precipitates filling up the whole grain boundary.
引文
[1]张亮,杨卉芃,冯安生,等.全球镍矿资源开发利用现状及供需分析[J].矿产保护与利用,2016(1):64-69.Zhang Liang,Yang Huipeng,Feng Ansheng,et al.Study on current situation and analysis of supply and demand of global nickel resource[J].Conservation and Utilization of Mineral Resources,2016(1):64-69.
    [2]齐达,李晶,董力,等.200系列不锈钢耐腐蚀性能研究[J].钢铁钒钛,2010,31(2):72-76.Qi Da,Li Jing,Dong Li,et al.Study on corrosion resistance of 200series stainless steel[J].Iron Steel Vanadium Titanium,2010,31(2):72-76.
    [3]哈胜男,任颂赞,谢春生,等.200系列不锈钢钢丝失效分析[J].材料开发与应用,2008,23(1):51-54.Ha Shengnan,Ren Songzan,Xie Chunsheng,et al.Failure analysis of stainless steel wire of 200 series[J].Development and Application of Materials,2008,23(1):51-54.
    [4]谢长川,杨东,罗德洪,等.200系列不锈钢连铸结晶器液面波动研究[J].炼钢,2013,29(5):25-29.Xie Changchuan,Yang Dong,Luo Dehong,et al.Study on fluctuation of mould level in 200 series stainless steel slab caster[J].Steelmaking,2013,29(5):25-29.
    [5]孙永庆,梁剑雄,杨志勇,等.化学成分和热处理对AM355不锈钢组织和力学性能的影响[J].钢铁,2013,48(5):68-71.Sun Yongqing,Liang Jianxiong,Yang Zhiyong,et al.Effect of composition and heat treatment on microstructure and mechanical property of AM355 steels[J].Iron and Steel,2013,48(5):68-71.
    [6]International Nickel Study Group.World Nickel Statistics[M].International Nickel Study Group,2002.
    [7]严旺生.200系列(锰系)不锈钢发展前景[J].中国锰业,2004(2):11-15.Yan Wangsheng.The developing prospect for the stainless steel of type200(Mn-serials)[J].China's Manganese Industry,2004(2):11-15.
    [8]Risopatron C.Development and new challenges for base metals:The case of copper,zinc,lead and nickel[R].United Nations Conference on Trade and Development,2014.
    [9]White P.An overview and outlook for the global lead,zinc,nickel and copper markets[Z].Indian Metals Industry-Shaping the Next Decade.New Delhi:ILZSG,2011.
    [10]杨海瑛,刘全明,陈军.固溶处理对Ti-26合金组织和力学性能的影响[J].金属热处理,2017,42(9):111-115.Yang Haiying,Liu Quanming,Chen Jun.Effect of solution treatment on microstructures and mechanical properties of Ti-26 alloy[J].Heat Treatment of Metals,2017,42(9):111-115.
    [11]张文华.不锈钢及其热处理[M].沈阳:辽宁科学技术出版社,2010.
    [12]高福彬.氮对201不锈钢组织和性能的影响[D].包头:内蒙古科技大学,2014.
    [13]陈咨伟.高氮无镍奥氏体不锈钢孪晶强化机制的研究[D].长春:长春工业大学,2013.
    [14]胡江桥.金属材料退火孪晶控制及应用[J].科技资讯,2013(23):4-6.Hu Jiangqiao.Metal material annealing twinning control and application[J].Science and Technology Information,2013(23):4-6.
    [15]严玲,米振莉,唐荻,等.TWIP钢变形和退火过程中孪晶的形成及机理研究[C]//2005中国钢铁年会,北京,2005.
    [16]侯东坡,宋仁伯,项建英,等.固溶处理对316L不锈钢组织和性能的影响[J].材料热处理学报,2010,31(12):61-65.Hou Dongpo,Song Renbo,Xiang Jianying,et al.Effect of solution treatment on microstructure and properties of 316 L stainless steel[J].Transactions of Materials and Heat Treatment,2010,31(12):61-65.
    [17]叶青,冯兴宇,赵鸿金.固溶时间对Cu-Ni-Si-Mg合金组织性能的影响[J].有色金属科学与工程,2017,8(3):79-83.Ye Qing,Feng Xingyu,Zhao Hongjin.Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J].Nonferrous Metals Science and Engineering,2017,8(3):79-83.
    [18]林治明.第二相引起钢的沿晶断裂[J].金属材料与热加工工艺,1982(4):60-66.Lin Zhiming.The second phase causes the intergranular fracture of steel[J].Metal Materials and Thermal Processing.1982(4):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700