岩石孔隙结构表征与流体输运可视化研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic Pore Structure Characterization and Fluids Transport Visualization of Reservoir Rock
  • 作者:宋睿 ; 汪尧 ; 刘建军
  • 英文作者:SONG Rui;WANG Yao;LIU Jianjun;School of Geoscience and Technology, Southwest Petroleum University;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Science;
  • 关键词:多孔介质 ; 数字岩芯 ; 孔隙结构 ; 多尺度 ; 渗流力学
  • 英文关键词:porous media;;digital rock;;pore structure;;multi-scale;;seepage mechanics
  • 中文刊名:XNSY
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:西南石油大学地球科学与技术学院;中国科学院武汉岩土力学研究所;
  • 出版日期:2018-11-26 16:19
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2018
  • 期:v.40;No.191
  • 基金:国家科技重大专项(2017ZX05013-001);; 中国科学院岩土力学与工程国家重点实验室开放基金(Z017009)
  • 语种:中文;
  • 页:XNSY201806009
  • 页数:21
  • CN:06
  • ISSN:51-1718/TE
  • 分类号:89-109
摘要
孔隙结构特征的室内测试技术主要分为间接测试和直接测试两大类。前者主要以获取孔径分布等特征统计参数为主的流体注入法及孔隙流体饱和度的反分析法。后者主要为以获取孔隙结构图像为目的的光学辐射法。微观渗流物理实验可以实现孔隙空间中流体流动形态的可视化监测与分析,获取宏观条件下难以观测的实验现象,有助于孔隙尺度下渗流及驱替过程中复杂流动行为的微观力学机制分析。基于岩芯微观孔隙结构图像的模型重建是一种实现孔隙结构精细化表征与流体输运特性可视化研究的数值分析手段。基于不同的表征思想,多孔介质内流体输运控制方程可分为分子动力学模拟、格子玻尔兹曼模拟和计算流体动力学模拟。主要通过泊肃叶定律和准静态模型实现孔隙尺度流体流动和驱替过程的模拟。
        The techniques for pore structure acquiring and characterization are divided into two types: indirect testing and direc testing. The former consist of the fluid injection method and the inverse analysis method which obtain the statistic parameters such as pore size distribution. The latter are mainly the optics and radiation methods which obtain the image of pore structure directly. The micro-seepage physical experiment plays an important role in the mechanical mechanism study on pore-scale complex transport behaviors during the seepage and displacement process, and can realize visual monitoring and capture of fluid shape and distribution in pore space, which are difficult to obtain under macroscopic condition. The pore-scale model reconstruction method based on the pore structure images is a numerical modelling process for visual study on pore structure characterization and transport properties prediction. According to the different representation scales, the governing equations of fluid flow in porous media can be divided into the Molecular Dynamics(MD), the Lattice Boltzmann method(LBM) and the Computational Fluid Dynamics(CFD). Besides, the Poiseuille law and quasi-static model are commonly utilized to model fluid flow and displacement process in pore network model.
引文
[1] LAI Jin,WANG Guiwen,WANG Ziyuan,et al. A review on pore structure characterization in tight sandstones[J].Earth-Science Reviews, 2018, 177:436-457. doi:10.-1016/j.earscirev.2017.12.003
    [2]宋艳波.低渗气藏岩石变形渗流机理及应用研究[D].北京:中国地质大学,2005.SONG Yanbo. A study of the percolation mechanisms with rock deformation and the application for low permeability gas reservoir[D]. Beijing:China University of Geoscience,2005.
    [3]司马立强,王超,王亮,等.致密砂岩储层孔隙结构对渗流特征的影响——以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J].天然气工业,2016, 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003SIMA Liqiang, WANG Chao, WANG Liang, et al. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs:A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western SichuanBasin[J]. Natural Gas Industry, 2016. 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003
    [4]熊金玉,李思田,唐玄,等.湖相碳酸盐岩致密储层有机质赋存状态与孔隙演化微观机理[J].石油与天然气地质,2015, 36(5):756-765. doi:10.11743/ogg20150506XIONG Jinyu, LI Sitian, TANG Xuan, et al. Organic matter occurrence and microscopic mechanism of pore formation in the lacustrine tight carbonate reservoirs[J].Oil&Gas Geology,2015.36(5):756-765. doi:10.11743/-ogg20150506
    [5]朱洪林.低渗砂岩储层孔隙结构表征及应用研究[D].成都:西南石油大学,2014.ZHU Honglin. Pore structure characterization of low permeability sandstone reservoir and application[D]. Chengdu:Southwest Petroleum University, 2014.
    [6]郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述[J].岩性油气藏,2013,25(5):123-128.doi:10.3969/j.issn.1673-8926.2013.05.023HAO Lewei, WANG Qi, TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5):123-128. doi:10.3969/j.issn.1673-8926.2013.05.023
    [7]杨正明,姜汉桥,李树铁,等.低渗气藏微观孔隙结构特征参数研究——以苏里格和迪那低渗气藏为例[J].石油天然气学报,2007.29(6):108-119. doi:10.3969/-j.issn.1000-9752.2007.06.026YANG Zhengming, JIANG Hanqiao, LI Shutie, et al.Characteristic parameters of microscopic pore structures of low permeability gas reservoirs——By using sulige and dina low permeability gas reservoirs for example[J]. Journal of Oil and Gas Technology, 2007.29(6):108-119. doi:10.3969/j.issn.1000-9752.2007.06.026
    [8] ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy&Geochemistry, 2015, 80(1):61-164. doi:10.2138/-rmg.2015.80.04
    [9]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007YU Junbo, GUO Dianjun, WANG Xinqiang. Study of microscopic behaviors of low permeable reservoir through constant velocity mercury injection technique[J]. Journal of Daqing Petroleum Institute, 2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007
    [10]杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013, 24(3):450-455.YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3):450-455.
    [11]崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012.27(12):1319-1325.CUI Jingwei, ZOU Caineng, ZHU Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Sciences, 2012, 27(12):1319-1325.
    [12]刘凡,姜汉桥,张贤松,等.基于核磁共振的水平井开发孔隙动用机理研究[J].西南石油大学学报(自然科学版),2013, 35(6):99-103. doi:10.3863/j.issn.1674-5086.2013.06.013LIU Fan, JIANG Hanqiao, ZHANG Xiansong, et al. Study on the mechanism of horizontal well development based on NMR[J]. Journal of Southwest Petroleum University(Science&Technology Edition), 2013, 35(6):99-103.doi:10.3863/j.issn. 1674-5086.2013.06.013
    [13]陈杰,刘向君,成竹,等.利用电阻率测井资料研究砂岩孔隙结构特征[J].西南石油大学学报(自然科学版),2005,27(6):5-7. doi:10.3863/j.issn.1674-5086.2005.-06.002CHENG Jie,LIU Xiangjun,CHENG Zhu,et al. Studying the pore structure of sandstone by resistivity logging[J].Journal of Southwest Petroleum University(Science&Technology Edition), 2005, 27(6):5-7. doi:10.3863/j.issn.-1674-5086.2005.06.002
    [14]刘向君,周改英,陈杰,等.基于岩石电阻率参数研究致密砂岩孔隙结构[J].天然气工业,2007, 27(1):41-43. doi:10.3321/j.issn:1000-0976.2007.01.012LIU Xiangjun, ZHOU Gaiying, CHEN Jie, et al. Study on pore structure of tight sand based on resistivity[J]. Natural Gas Industry, 2007, 27(1):41-43. doi:10.3321/j.issn:-1000-0976.2007.01.012
    [15] MCCREESH C A, EHRLICH R, CRABTREE S J, et al.Petrography and reservoir physicsⅡ:Relating thin section porosity to capillary pressure, the association between pore types and throat size[J]. AAPG Bulletin, 1991, 75:1563-1578. doi:10.1016/0148-9062(92)93814-Z
    [16]于丽芳,杨志军,周永章,等.扫描电镜和环境扫描电镜在地学领域的应用综述[J].中山大学研究生学刊(自然科学、医学版),2008,29(1):54-61.YU Lifang, YANG Zhijun, ZHOU Yongzhang, et al.The application summary of scanning electron microscope(SEM)and environment scanning electron microscope(ESEM)in geoscience[J]. Journal of the Graduates Sun Yatsen University(Natural Science, Medicine), 2008, 29(1):54-61.
    [17] LEBEDEVA E,SENDEN T J,KNACKSTEDT M,et al.Improved oil recovery from tensleep sandstone-studies of brine-rock interactions by micro-ct and AFM[C]//IOR2009-15~(th)European Symposium on Improved Oil Recovery, 2009. doi:10.3997/2214-4609.201404879
    [18] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mud rocks(shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009,48(8):16-21. doi:10.2118/09-08-16-DA
    [19]宋睿,刘建军,李光.基于CT图像及孔隙网格的岩芯孔渗参数研究[J].西南石油大学学报(自然科学版),2015,37(3):138-145. doi:10.11885/j.issn.16745086.-2015.04.03.03SONG Rui, LIU Jianjun, LI Guang. Researches on the pore permeability of core sample based on 3D micro-CT images and pore-scale structured element models[J]. Journal of Southwest Petroleum University(Science&Technology Edition), 2015, 37(3):138-145. doi:10.11885/j.issn.-16745086.2015.04.03.03
    [20]王冬欣.基于Micro-CT图像的数字岩芯孔隙级网络建模研究[D].吉林:吉林大学,2015.WANG Dongxin. The research of digital core network extraction based on micro-CT images[D]. Jilin:Jilin University, 2015.
    [21] WHITAKER S. Flow in porous mediaⅠ:A theoretical derivation of Darcy's law[J]. Transport in Porous Media,1986(1):3-25. doi:10.1007/BF01036523
    [22]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001.HUANG Yanzhang, YU Dasen. Experimental mechanics and its application of microscopic seepage[M]. Beijing:Petroleum Industry Press, 2011.
    [23]秦积舜,李爱芬.油层物理学[M].青岛:中国石油大学出版社,2003.QIN Jishun, LI Aifen. Petrophysics[M]. Qingdao:China Petroleum University Press, 2003.
    [24] EDITION S. Recommended practices for core analysis[M]. Washington:API Publishing Services, 2010.
    [25]熊钰,王帅,耿站立,等.弱胶结高渗疏松砂岩人造岩芯制作新技术[J].地球物理学进展,2015, 30(3):1474-1479. doi:10.6038/pg20150364XIONG Yu,WANG Shuai, GENG Zhanli, et al. A new technology of making weakly cemented and hypertonic artificial cores of unconsolidated sandstone[J]. Progress in Geophysics, 2015, 30(3):1474-1479. doi:10.6038/-pg20150364
    [26]姚军,孙海,李爱芬,等.现代油气渗流力学体系及其发展趋势[J].中国科学:科学通报,2018(6):425-451.doi:10.1360/N972017-00161YAO Jun, SUNHai, LI Aifen, et al. Modern system of multiphase flow in porous media and its development trend[J].China Science Bulletin, 2018(6):425-451. doi:10.1360/-N972017-00161
    [27]李爱芬,张东,姚军,等.缝洞单元注水开发物理模拟[J].中国石油大学学报(自然科学版),2012, 36(2):130-135. doi:10.3969/j.issn.1673-5005.2012.02.022LI Aifen, ZHANG Dong, YAO Jun, et al. Physical simulation of water flooding in fractured-vuggy unit[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(2):130-135. doi:10.3969/j.issn.1673-5005.2012.02.022
    [28]于明旭,朱维耀,宋洪庆.低渗透储层可视化微观渗流模型研制[J].辽宁工程技术大学学报(自然科学版),2013, 32(12):1646—1650. doi:10.3969/j.issn.-1008-0562.2013.12.014YU Mingxu, ZHU Weiyao, SONG Hongqing. Development of microscopic visualization flow model of lowpermeability reservoir[J]. Journal of Liaoning Technical University(Natural Science Edition), 2013, 32(12):1646-1650. doi:10.3969/j.issn.1008-0562.2013.12.014
    [29] CHATENEVER A, CALHOUN Jr J C. Visual examinations of fluid behavior in porous media. Part I[J]. Journal of Petroleum Technology, 1952,4(6):149-156. doi:10.-2118/135-G
    [30] KELLER A A, BLUNT M J, ROBERTS A P V. Micromodel observation of the role of oil layers in three-phase flow[J], Transport in Porous Media, 1997.26(3):277-297.doi:10.1023/A:1006589611884
    [31]朱义吾,徐安新,吕旭明,等.长庆油田延安组油层光刻显微孔隙模型水驱油研究[J].石油学报,1989,10(3):40-47. doi:10.7623/syxb198903005ZHU Yiwu, XU Anxin, LU Xuming, et al. Oil water displacement experiments in glass micromodels for Yanan reservoir rocks, Changqing Oil Field[J]. Acta Petrolei Sinica, 1989, 10(3):40-47. doi:10.7623/syxb198903005
    [32]孔令荣,曲志浩,万发宝,等.砂岩微观孔隙模型两相驱替实验[J].石油勘探与开发,1991(4):79-85.KONG Lingrong, QU Zhihao, WAN Fabao, et al. Experiments of two fluid phase displacement in sandstone micromodels[J]. Petroleum Exploration and Development,1991(4):79-85.
    [33]鄢友军,陈俊宇,郭静姝,等.龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析[J].天然气工业,2012,32(1):64-66. doi:10.3787/j.issn.1000-0976.-2012.01.013YAN Youjun, CHEN Junyu, GUO Jingshu, et al. A visualized experiment on gas-water two-phase seepage through reservoirs in the longgang gas field, sichuan basin[J]. Natural Gas Industry, 2012, 32(1):64-66. doi:10.3787/j.-issn.1000-0976.2012.01.013
    [34]高源.稠油油藏聚合物驱微观波及实验及数值模拟研究[D].成都:西南石油大学,2017.GAO Yuan. Experiment study and numerical simulation of microscopic sweep of polymer flooding in heavy oil reservoir[D]. Chengdu:Southwest Petroleum University, 2017.
    [35] OSEIBONSU K, GRASSIA P, SHOKRI N. Investigation of foam flow in a 3D printed porous medium in the presence of oil[J]. Journal of Colloid and Interface Science,2017.490:850-858. doi:10.1016/j.jcis.2016.12.015
    [36]程毅翀.基于低场核磁共振成像技术的岩芯内流体分布可视化研究[D].上海:上海大学,2014.CHENG Yichong. Visualization study on fluid distribution in core based on low-field MRI method[D]. Shanghai:Shanghai University, 2014.
    [37]王二利.矩形微通道内流动沸腾流阻特性及可视化研究[D].广州:华南理工大学,2013.WANG Erli. Flow resistance characteristics and visu-alization research on flow boiling rectangular microchannels[D]. Guangzhou:South China University of Technology, 2013.
    [38]曹永娜.利用CT扫描技术实现对岩芯微观驱替过程的研究[J].科学技术与工程,2015, 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013CAO Yongna. Study of microscopic blooding process using CT scanning technique[J]. Science Technology and Engineering,2015. 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013
    [39] BLUNT M J.BRANKO B.DONG Hu, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources,2013,51(1):197-216. doi:10.1016/j.advwatres.2012.03.-003
    [40] LIU Z H, YANG Y F, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-energy Research, 2017, 1(3):171-181.
    [41] BULTREYS T,BOONE M A,BOONE M N,et al. Fast laboratory-based micro-computed tomography for porescale research:Illustrative experiments and perspectives on the future[J]. Advances in Water Resources, 2016, 95:341-351. doi:10.1016/j.advwatres.2015.05.012
    [42] BULTREYS T, BOEVER W D, CNUDDE V. Imaging and image-based fluid transport modeling at the pore scale in geological materials:A practical introduction to the current state-of-the-art[J]. Earth-science Reviews, 2016.155:93-128. doi:10.1016/j.earscirev.2016.02.001
    [43] KHISHVAND M, AKBARABADI M, PIRI M. Microscale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples[J].Advances in Water Resources, 2016, 94:379-399. doi:10.1016/j.advwatres.2016.05.012
    [44] MENKE H P, BIJELJIC B, ANDREW M G, et al. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J]. Environmental Science&Technology, 2015, 49(7):4407-4414. doi:10.1021/-es505789f
    [45] ARKS C,KNACKSTEDT M A. Virtual permeametry on microtomographic images[J]. Journal of Petroleum Science and Engineering, 2004, 45(1):41-46. doi:10.1016/j.-petrol.2004.05.001
    [46] DONG Hu, TOUATIM, BLUNT, et al. Pore network modeling:Analysis of pore size distribution of arabian core samples[C]. SPE 105156.2007. doi:10.2118/105156-MS
    [47] BLUNT M J. Flow in porous media-pore-network models and multiphase flow[J]. Current Opinion in Colloid&Interface Science, 2001.6(3):197-207.doi:10.1016/S1359-0294(01)00084-X
    [48] ARNS C H, KNACKSTEDT M A, PINCZEWSKI W V,et al. Computation of linear elastic properties from microtomographic images:Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1396-1405. doi:10.1190/1.1512785
    [49] KEEHM Y, MUKERJI T, PRASAD M, et al. Permeability prediction from thin sections:3D reconstruction and lattice-boltzmann flow simulation[J]. Geophysics Research Letter, 2004, 31(310):1668. doi:10.1029/2003GL018761
    [50] SAIN R. Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical, and transport properties[J]. Geophysics, 2012, 76(6):125. doi:10.1190/2011-1206-GEODIS.2
    [51]宋睿.基于微尺度重建模型的岩石热一流—固耦合细观机理研究[D].成都:西南石油大学,2016.SONG Rui. Research on micro thermal-hydro-mechanical coupling mechanism based on pore scale model of rock[D]. Chengdu:Southwest Petroleum University,2016.
    [52] FATT I. Capillarity permeability—The network model of porous mediai. Capillary pressure characteristics[J]. Trans.AIME, 1956,207(7):144-159.
    [53] FATT I. The network model of porous mediaⅢ. Dynamic properties of networks with tube radius distribution[J].Trans. AIME, 1956.207:164-181.
    [54] CHATZIS I, DULLIEN F A L. Modelling pore structure by 2D and 3D networks with application to sandstones[J].Journal of Canadian Petroleum Technology, 1977, 16(1):97-108. doi:10.2118/77-01-09
    [55] PURCELL W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48. doi:10.2118/949039-G
    [56] DULLIEN F A L. Single phase flow through porous media and pore structure[J]. The Chemical Engineering Journal,1975, 10(1):1-34. doi:10.1016/0300-9467(75)88013-0
    [57] SCHEIDEGGERA E. Physics offlow through porous media[M]. Toronto:University of Toronto, 1963.
    [58]员美娟,郑伟.单毛细管中卡森流体的分形分析[J].武汉科技大学学报(自然科学版),2012, 35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.018YUAN Meijuan, ZHENG Wei. Fractal analysis of casson fluid flow in a capillary[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2012,35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.-018
    [59]员美娟.分形毛细管中Reiner-Philippoff非牛顿流体的有效渗透率研究[J].武汉科技大学学报(自然科学版),2013, 36(2):158-160. doi:10.3969/j.issn.1674-3644.-2013.02.018YUAN Meijuan. Effective permeability of reinerphilippoff fluid in a fractal capillary[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2013, 36(2):158-160. doi:10.3969/j.issn.1674-3644.2013.02.018
    [60]OREN P E, BAKKE S, ARNTZEN O J. Extending predic-tive capabilities to network models[J]. SPE Journal, 1998,3(4):324-336. doi:10.2118/52052-PA
    [61] PATZEK T W. Verification of a complete pore network simulator of drainage and imbibition[J]. SPE Journal,2001.6(2):144-156. doi:10.2118/71310-PA
    [62] PIRI M, BLUNT M J. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous MEDIA I. Model description[J]. Physical Review E, 2005, 71(2):026301. doi:10.1103/PhysRevE.-71.026301
    [63]叶礼友.基于N-S方程的孔隙介质微观渗流数值模拟[D].武汉:武汉工业学院,2008.YE Liyou. Numerical simulation of microcosmic seepage in porous media based on N-S equation[D]. Wuhan:Wuhan Polytechnic University, 2008.
    [64] VARLOTEAUX C, BEKRI S, ADLER P M. Pore network modelling to determine the transport properties in presence of a reactive fluid:From pore to reservoir scale[J].Advances in Water Resources, 2013, 53(2):87-100. doi:10.1016/j.advwatres.2012.10.004
    [65]陈强.基于高分辨率成像技术的页岩孔隙结构表征[D].成都:西南石油大学,2014.CHEN Qiang. Pore structure characterization of shale based on high resolution imaging technology[D]. Chengdu:Southwest Petroleum University, 2014.
    [66]王波,宁正福.多孔介质微观模型重构方法研究[J].油气藏评价与开发2012, 2(2):45-49. doi:10.3969/j.-issn.2095-1426.2012.02.009WANG Bo, NING Zhengfu. Research on the reconstruction method of the micro-model of porous medium[J]. Reservoir Evaluation and Development, 2012,2(2):45-49. doi:10.3969/j.issn.2095-1426.2012.02.009
    [67] LIANG Z, IOANNIDIS M A, CHATZIS I. Geometric and topological analysis of three-dimensional porous media:Pore space partitioning based on morphological skeletonization[J]. Journal of Colloid&Interface Science,2000.221(1):13-24. doi:10.1006/jcis.1999.6559
    [68]OREN P E, BAKKE S. Reconstruction of berea sandstone and pore-scale modelling of wettability effects[J].Journal of Petroleum Science&Engineering, 2003.39(3):177-199. doi:10.1016/S0920-4105(03)00062-7
    [69] JAMSHIDI S, BOOZARJOMEHRY R B, PISHVAIE M R. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms[J].Advances in Water Resources, 2009, 32(10):1543-1553.doi:10.1016/j.advwatres.2009.07.007
    [70] AL-KHARUSI A S, BLUNT M J. Network extraction from sandstone and carbonate pore space images[J]. Journal of Petroleum Science and Engineering, 2007, 56(4):219-231. doi:10.1016/j.petrol.2006.09.003
    [71] RAEESI B, PIRI M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale net-work modeling approach[J]. Journal of Hydrology,2009,376(3):337-352. doi:10.1016/j.jhydrol.2009.07.060
    [72] BAUER D, YOUSSEF S, FLEURY M, et al. Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed micro-tomography[J]. Transport in Porous Media, 2012, 94(2):505-524. doi:10.1007/-s11242-012-9941-z
    [73] MASON G, MORROW N R. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J].Journal of Colloid and Interface Science, 1991, 141(1):262-274. doi:10.1016/0021-9797(91)90321-X
    [74] LIU Jianjun, WANG Yao, SONG Rui. A pore scale flow simulation of reconstructed model based on the micro seepage experiment[J]. Geofluids, 2017(5):1-8. doi:10.-1155/2017/7459346
    [75] SONG Rui, CUI Mengmeng, LIU Jianjun, et al. A porescale simulation on thermal-hydromechanical coupling mechanism of rock[J]. Geofluids, 2017(21):7510527. doi:10.1155/2017/7510527
    [76] JU Yang, WANG Huijie, YANG Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Science China:Technological Sciences, 2010,53(4):1098-1113. doi:10.1007/s11431-010-0126-0
    [77] SONG Rui,LIU Jianjun, CUI Mengmeng. A new method to reconstruct structured mesh model from micro-computed tomography images of porous media and its application[J]. International Journal of Heat&Mass Transfer, 2017, 109:705-715. doi:10.1016/j.-ijheatmasstransfer.2017.02.053
    [78] ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere system[J]. Journal of Chemical Physics, 1957,27(5):1208-1209. doi:10.1063/1.1743957
    [79] CHEN Shiyi, DOOLEN G D. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30(1):329-364. doi:10.1146/annurev.fluid.30.1.-329
    [80] BRUCE G H,PEACEMAN D W,RACHFORD H H,et al. Calculations of unsteady-state gas flowthrough porous media[J]. Journal of Petroleum Technology, 1953, 5(3):79-92. doi:10.2118/221-G
    [81] SHIN J Y, ABBOTTN L. Combining molecular dynamics simulations and transition state theory to evaluate the sorption rate constants for decanol at the surface of water[J]. Langmuir, 2001.17(26):8434-8443. doi:10.1021/-1a0106891
    [82] SUN H,YAO J,CAO Y C,et al. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis[J]. International Journal of Heat and Mass Transfer, 2017, 104:227-239. doi:10.1016/j.-ijheatmasstransfer.2016.07.083
    [83] LADD A J C. Numerical simulations of particulate suspen-sions via a discretized boltzmann equation partⅡ:Numerical results[J]. Journal of Fluid Mechanics, 1994.271(271):285-309. doi:10.1117/Sc0022112094001783
    [84] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E:Statistical Physics Plasmas Fluids&Related Interdisciplinary Topics, 1993,47(3):1815. doi:10.-1103/PhysRevE.47.1815
    [85] QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6):479. doi:10.1209/0295-5075/17/6/-001
    [86] GUO Z L, SHI B C, WANG N C. Lattice BGK model for incompressible navier-stokes equation[J]. Journal of Computational Physics, 2000, 165(1):288-306. doi:10.1006/-jcph.2000.6616
    [87] FUENTES J M, KUZNIKF. JOHANNES K, et al. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection[J]. Physics Letters A, 2014,378(4):374-381. doi:10.1016/j.physleta.2013.11.042
    [88]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008.GUO Zhaoli, ZHENG Chuguang. Principle and application of lattice boltzmann method[M]. Beijing:Science Press, 2008.
    [89] KALYANI V K, PALLAVIKA, CHAKRABORTY S K.Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media[J]. Applied Mathematics&Computation, 2014, 237(3):133-145.doi:10.1016/j.amc.2014.03.029
    [90] LIU Jianjun, SONG Rui, CUI Mengmeng. Improvement of predictions of petrophysical transport behavior using three-dimensional finite volume element model with micro-CT images[J]. Journal of Hydrodynamics,2015,27(2):234-241. doi:10.1016/S1001-6058(15)60477-2
    [91] WALTZ J, CANFIELD T R, MORGAN N R, et al. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions[J].Computers&Fluids,2013, 81(15):57-67. doi:10.1016/-j.compfluid.2013.03.025
    [92] BREBBIA C A, WROBEL L C. Boundary element method for fluid flow[J]. Advances in Water Resources, 1979,2:83-89. doi:10.1016/0309-1708(79)90015-0
    [93]姚军,赵秀才.数字岩芯及孔隙级渗流模拟理论[M].北京:石油工业出版社,2010.YAO Jun, ZHAO Xiucai. Digital core and modelling theory of pore scale seepage[M]. Beijing:Petroleum Industry Press, 2010.
    [94] VALVATNE P H. Predictive pore-scale modelling of multiphase flow[D]. London:Imperial College, 2009.
    [95] LENORMAND R, ZARCONE C, SARR A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts[J]. Journal of Fluid Mechanics, 2006,135(135):337-353. doi:10.1017/S0022112083003A10
    [96]赵秀才.数字岩芯及孔隙网络模型重构方法研究[D].青岛:中国石油大学,2009.ZHAO Xiucai. Numerical rock construction and pore network extraction[D]. Qingdao:China University of Petroleum(East China), 2009.
    [97] BLUNT M J. Physically-based network modeling of multiphase flow in intermediate-wet porous media[J]. Journal of Petroleum Science&Engineering, 1998, 20(3-4):117-125. doi:10.1016/S0920-4105(98)00010-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700