铝酸盐溶液对TiAl合金微弧氧化膜生长和膜层特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Aluminate Electrolyte on Growth and Properties of Micro-arc Oxidation Coating on TiAl Alloy
  • 作者:李夕金 ; 薛文斌
  • 英文作者:LI Xi-jin;XUE Wen-bin;School of Physics and Electronics,Henan University;School of Nuclear Science and Technology,Beijing Normal University;
  • 关键词:TiAl合金 ; 微弧氧化 ; 液相等离子沉积 ; 铝酸盐溶液 ; 结构 ; 硬度
  • 英文关键词:TiAl alloy;;micro-arc oxidation;;plasma electrolysis oxidation;;aluminate electrolyte;;structure;;hardness
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:河南大学物理与电子学院;北京师范大学核科学与技术学院;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:河南省科技发展计划项目(162300410067)~~
  • 语种:中文;
  • 页:BMJS201907012
  • 页数:7
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:111-117
摘要
目的改善TiAl合金表面结构,提高其力学性能。方法利用微弧氧化(MAO)方法 ,在NaAlO_2电解液中制备了TiAl合金表面的陶瓷膜,分析微弧氧化过程中不同阶段的膜层生长特点,并研究铝酸盐溶液对微弧氧化膜生长速率的影响。通过硬度测试和显微划痕测试方法 ,评价膜层对基体硬度的影响和膜/基结合力的变化。利用扫描电子显微镜(SEM)分析不同厚度膜层的结构,结合能谱仪(EDS)分析膜层中元素的分布变化。使用X射线衍射仪(XRD)分析膜层相结构的变化。结果铝酸盐溶液中微弧氧化膜的厚度随着微弧氧化时间增加,可以达到57μm。微弧氧化过程分为明火花和暗火花生长两个阶段:前30 min是明火花生长阶段,生长速率可达1μm/min;后续时间为暗火花生长阶段,生长速率约为0.23μm/min。膜层包括致密内层和疏松外层。致密层中孔隙较少,Al、Ti含量较低;外层有较大的孔隙,Al含量较高,Ti含量较低。扫描电子显微镜结果显示,膜的内层与基体结合良好。显微划痕实验测得膜/基结合力达到45 N。陶瓷膜的相成分是Rutile-TiO_2和Al_2Ti O_5,且随着膜层变厚,Al_2TiO_5的相对含量上升。陶瓷膜的显微硬度随着膜厚度的增加而增加,120 min膜的显微硬度值可达1450 HV,是基体硬度的3倍多。结论在NaAlO_2中对TiAl合金进行微弧氧化处理,可以制备55μm的陶瓷层。该膜层与基体间有优异的结合力,可以有效改善基体的表面结构,提高材料的硬度,改善其耐磨性能。
        The work aims to improve the surface structure and mechanical properties of TiAl alloy.Micro-arc oxidation(MAO)method was used to fabricate ceramic coating on TiAl alloy in NaAlO_2 electrolyte.The growth properties of coating were analyzed at different stages during MAO,and the effect of aluminate solution on the growth rate of MAO coating was studied.Micro-hardness test and micro-scratch test were used to evaluate the effect of coating on substrate hardness and the change in binding force of coating/substrate.The structure of the coating with different thickness was studied by scanning electron microscope(SEM),and elements distribution in the coating was analyzed by Energy-dispersive X-ray spectroscopy(EDS).The energy dispersive X-ray detector(XRD)was adopted to investigate the change in the phase structure of coatings.The thickness of the coating increased with the prolongation of MAO time in aluminate solution,and finally reached 57μm.MAO process was divided into two stages,namely the initial bright-spark stage with a growth rate of 1μm/min,and the followed dark-spark stage with a growth rate of 0.23μm/min.The coating included two distinct layers,namely the condensed inner layer and the loose outer layer.The condensed layer had fewer pores and lower concentration of Al and Ti,while the outer layer had larger porosity and higher content of Al and lower content of Ti.From SEM results,the inner layer was bound to the substrate well.The binding force of coating/substrate was about 45 N when measured by the micro-scratch test.The phase components of the coatings were Rutile-TiO_2 and Al_2TiO_5,and the ratio Al_2TiO_5/Rutile-TiO_2 of increased with the increase of coating thickness.The micro-hardness of MAO coating increased with the increase of coating thickness,and a hardness of 1450HV was measured on the coating after 120 min,which was more than three times of that on substrate.55μm ceramic coating can be prepared through MAO on TiAl alloy in NaAlO_2.The coating has excellent binding force to the substrate,which can improve the surface structure of substrate,improve the hardness of materials and increase the wear resistance.
引文
[1]CHENG Fang,LIN Jun-pin,LIANG Yong-feng.Friction and wear properties of a high Nb-containing TiAl alloy against WC-8Co,Si3N4,and GCr15 in an unlubricated contact[J].Intermetallics,2019,106:7-12.
    [2]KIM Y W.Strength and ductility in TiAl alloys[J].Intermetallics,1998,6(7):623-628.
    [3]LASALMONIE A.Intermetallics:Why is it so difficult to introduce them in gas turbine engines?[J].Intermetallics,2006,14(10):1123-1129.
    [4]YU L D,AUKKARAVITTAYAPUN S,BOONYAWAND,et al.Recent development in surface modification of industrial materials by ion beams and plasma at Chiang Mai University[J].Surface and coatings technology,2009,203(17):2771-2775.
    [5]FRITZ A,JONATHAN D H P,MICHAEL O.Gamma titanium aluminide alloys:Science and technology[M].Weinheim Germany:Viley-Vch verlag gmbh&Co.KGaA,2011.
    [6]CHENG Jun,LI Fei,ZHU Sheng-yu,et al.Electrochemical corrosion and tribological evaluation of TiAl alloy for marine application[J].Tribology international,2017,115:483-492.
    [7]WANG Long,CHENG Jun,QIAO Zhu-hui,et al.Tribological behaviors of in situ Ti B2 ceramic reinforced TiAl-based composites under sea water environment[J].Ceramics international,2017,43(5):4314-4323.
    [8]PLANCK S K,ROSENBERGER A H.The influence of high temperature exposure on the mechanical performance of aγtitanium aluminide alloy[J].Materials science and engineering:A,2002,325(1):270-280.
    [9]HUANG Hong-jian,QIU Jian-hui,SUN Man-xi,et al.Ahard coating with MAO/AAO double layers prepared on aluminum in etidronic acid by DC oxidation[J].Surface and coatings technology,2019,360:307-317.
    [10]VOEVODIN A A,YEROKHIN A L,LYUBIMOV V V,et al.Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment[J].Surface and coatings technology,1996,86-87:516-521.
    [11]ROKNIAN M,FATTAH-ALHOSSEINI A,GASHTI S O,et al.Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate:Microstructural analysis,antibacterial effect and corrosion behavior of coatings in ringer's physiological solution[J].Journal of alloys and compounds,2018,740:330-345.
    [12]唐誉豪,向东,李东豪,等.含石墨烯纳米片电解液中电流密度对2024铝合金微弧氧化膜性能的影响[J].表面技术,2018,47(7):203-208.TANG Yu-hao,XIANG Dong,LI Dong-hao,et al.Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating[J].Surface technology,2018,47(7):203-208.
    [13]ZHANG R F,QIAO L P,QU B,et al.Biocompatibility of micro-arc oxidation coatings developed on Ti6Al4V alloy in a solution containing organic phosphate[J].Materials letters,2015,153:77-80.
    [14]LIANG J,SRINIVASAN P B,BLAWERT C,et al.Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy[J].Electrochimica acta,2010,55(22):6802-6811.
    [15]WANG Y M,ZOU Y C,TIAN H,et al.Microarc oxidation coated magnesium alloy radiator for light emitting diode:Microstructure,thermal radiative and dissipating property[J].Surface and coatings technology,2016,294:102-108.
    [16]XIONG Hua-ping,MAO Wei,XIE Yong-hui,et al.Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance[J].Materials science and engineering:A,2005,391(1):10-18.
    [17]LI Xi-jin,WU Xiao-ling,XUE Wen-bin,et al.Structures and properties of ceramic films on TiAl intermetallic compound fabricated by microarc oxidation[J].Surface and coatings technology,2007,201(9):5556-5559.
    [18]WANG Shao-qing,XIE Fa-qin,WU Xiang-qing.Mechanism of Al2O3 coating by cathodic plasma electrolytic deposition on TiAl alloy in Al(NO3)3 ethanol-water electrolytes[J].Materials chemistry and physics,2017,202:114-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700