不同焊接方法焊接Ti-22Al-25Nb合金
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Joining of Ti-22Al-25Nb Alloy Using Different Welding Methods
  • 作者:邵玲 ; 崔恩红
  • 英文作者:SHAO Ling;CUI Enhong;School of Materials Science and Engineering,Beihang University;Physical and Chemical Laboratory,Goertek Company Limited;
  • 关键词:Ti-22Al-25Nb合金 ; 焊接方法 ; 显微结构 ; 拉伸性能 ; 显微硬度
  • 英文关键词:Ti-22Al-25Nb alloy;;welding method;;microstructure;;tensile property;;microhardness
  • 中文刊名:XJKB
  • 英文刊名:Materials China
  • 机构:北京航空航天大学材料科学与工程学院;歌尔股份有限公司理化实验室;
  • 出版日期:2019-04-10 09:27
  • 出版单位:中国材料进展
  • 年:2019
  • 期:v.38;No.447
  • 基金:中国航空工业航空科学基金资助项目(20111125005)
  • 语种:中文;
  • 页:XJKB201903011
  • 页数:5
  • CN:03
  • ISSN:61-1473/TG
  • 分类号:98-102
摘要
脉冲钨极惰性气体焊接方法、活性剂钨极惰性气体焊接方法和超音频脉冲钨极惰性气体焊接方法分别用于焊接Ti-22Al-25Nb合金。对不同焊接方法获得的焊接接头进行显微组织观察、拉伸性能测试和显微硬度测量。脉冲钨极惰性气体焊接接头的熔合区中柱状晶很少,热影响区中晶界严重过烧;活性剂钨极惰性气体焊接接头完全焊透,在其熔合区的柱状晶是无序排列的;超音频脉冲钨极惰性气体焊接接头的焊缝中心有一小块区域是等轴晶,且在热影响区附近没有明显的晶界过烧现象。通过分析比较观察和测试的结果,发现使用超音频脉冲钨极惰性气体焊接方法获得的焊接接头是最优的,具有最高的抗拉强度和显微硬度。
        Ti-22Al-25Nb( at%) alloy was joined using pulse tungsten inert gas welding method,activated tungsten inert gas welding method and ultrasonic pulse frequency tungsten inert gas welding method. The microstructure of the different weld joints was observed, the ultimate tensile strength of them was investigated and the microhardness of them was measured. There were few columnar crystals in fusion zone and was a serious overburning of grain boundaries in the heat affected zone of weld joint using pulse tungsten inert gas welding method. The weld joint using A-TIG welding method was full penetration and the columnar crystals in fusion zone were not in order. There was a small zone of equiaxed crystals in the center of weld seam of weld joint using ultrasonic pulse frequency tungsten inert gas welding method and no obvious overburning of grain boundaries was observed near the heat affected zone. By comparison,it was found that the weld joint using ultrasonic pulse frequency tungsten inert gas welding method had the highest ultimate tensile strength and microhardness.
引文
[1]Germann L,Banerjee D,Guédou J Y,et al.Intermetallics[J],2005,13(9):920-924.
    [2]Li H Q,Wang Q M,Jiang S M,et al.Corrosion Science[J],2011,53(3):1097-1106.
    [3]Grigoriev A,Polozov I,Sufiiarov V,et al.Journal of Alloys and Compounds[J],2017,704 434-442.
    [4]Kumpfert J.Advanced Engineering Materials[J],2001,3(11):851-864.
    [5]Shi J,Li H Q,Wan M Q,et al.Corrosion Science[J],2016,102,200-208.
    [6]Zhang K,Liu M,Lei Z,et al.Journal of Materials Engineering and Performance[J],2014,23(10):3778-3785.
    [7]Wang Q M,Zhang K,Gong J,et al.Acta Materialia[J],2007,55(4):1427-1439.
    [8]Lin P,He Z,Yuan S,et al.Journal of Alloys and Compounds[J],2013,578,96-102.
    [9]Wang W,Zeng W,Xue C,et al.Materials Science and Engineering:A[J],2014,603,176-184.
    [10]Cao J,Dai X,Liu J,et al.Materials&Design[J],2017,121,176-184.
    [11]Chu Y,Li J,Zhu L,et al.Intermetallics[J],2017,90 119-127.
    [12]Zou G S,Xie E H,Bai H L,et al.Materials Science and Engineering:A[J],2009,499(1-2):101-105.
    [13]Wang Y,Cai X Q,Yang Z W,et al.Journal of Materials Science&Technology[J],2017,33(7):682-689.
    [14]Chen W,Chen Z Y,Wu C C,et al.Intermetallics[J],2016,75,8-14.
    [15]Li Y,Zhao Y,Li Q,et al.Materials&Design[J],2017,114,226-233.
    [16]Tan L,Yao Z,Zhou W,et al.Aerospace Science and Technology[J],2010,14(5):302-306.
    [17]Yao Z K,Qin C,Ning Y Q,et al.Advanced Materials Research[J],2013,668,543-546.
    [18]Kong B,Liu G,Wang D,et al.Materials&Design[J],2016,90,723-732.
    [19]Shen J,Li B,Hu S,et al.Optics&Laser Technology[J],2017,93,118-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700