选区激光熔化钛镍形状记忆合金的超弹性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Superelasticity of TiNi Shape Memory Alloy Manufactured by Selective Laser Melting
  • 作者:侯熙硕 ; 赵蒙 ; 王永信 ; 梁晋 ; 张旭东 ; 樊晓晨
  • 英文作者:HOU Xishuo;ZHAO Meng;WANG Yongxin;LIANG Jin;ZHANG Xudong;FAN Xiaochen;State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering,Xi'an Jiaotong University;State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering,Xi'an Jiaotong University;Xi'an Honghui Hospital;
  • 关键词:选区激光熔化 ; 增材制造 ; 钛镍形状记忆合金 ; 微观组织 ; 超弹性
  • 英文关键词:Selective laser melting;;Additive manufacturing;;TiNi shape memory alloy;;Microstructure;;Superelasticity
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:西安交通大学机械工程学院机械制造系统工程国家重点实验室;西安交通大学材料科学与工程学院金属材料强度国家重点实验室;西安市红会医院;
  • 出版日期:2019-03-15
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(51675404、51421004)
  • 语种:中文;
  • 页:HKGJ201906012
  • 页数:6
  • CN:06
  • ISSN:11-4387/V
  • 分类号:76-81
摘要
超弹性钛镍合金用于制造航空航天功能性器件,采用选区激光熔化成形方法可显著提高功能性器件设计和制造的自由度与复杂度。通过对选区激光熔化成形后的试样进行微观组织特征和超弹性行为分析,研究了材料在不同加载工况下的超弹性性能。研究结果表明:在20次循环试验中,超弹性行为表现优异且具有>6%应变范围的相变平台,马氏体相变开始与结束应力出现约4MPa的小幅衰减,相变应力稳定,累积残余应变仅为1.8%;随着应变幅值的增加,合金变形过程中消耗的能量值从23N·mm增至156N·mm,耗能值与应变幅值成线性增长关系;在不同应变速率下,合金的超弹性行为未发生明显变化。不同加载工况下,选区激光熔化成形的钛镍合金与传统方式制造的钛镍合金相比,超弹性行为表现得更加稳定,利于制造性能稳定的功能性器件。
        The superelastic TiNi alloy can be used in the manufacture of aerospace functional devices, and the method of selective laser melting can obviously improve the freedom and complexity of the design of functional devices.The superelasticity of TiNi is studied through analyzing microstructure of TiNi alloy and condcuting the superelasticity cycling tests. The results show that in 20 times cycling tests, superelasticity behaves well and has a phase transition platform of more than 6% strain, martensitic transformation start and end stress have a small attenuation about 4 MPa, phase transformation stress is stable, and the cumulative residual strain is only 1.8%; Under different strain amplitude, the energy consumption in the alloy deformation increases from 23 N · mm to 156 N · mm, and the energy consumption linearly increases with strain amplitude; The superelastic property of the alloy does not significantly change at different strain rates. Under different loading conditions, the TiNi alloy manufactured by selective laser melting has a more stable superelastic behavior compared with the TiNi alloy manufactured by traditional way, and is more conducive to manufacture the stable functional devices.
引文
[1] ANDANI M T, SAEDI S, TURABIA S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68:224-231.
    [2] SAEDI S, TURABI A S, ANDANI M T, et al. Texture, aging,and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys[J]. Materials Science and Engineering:A, 2017, 686:1-10.
    [3]孙伟,李晓杰,闫鸿浩,等.水下爆炸焊接制备NiTi合金与铜箔复合板[J].焊接学报,2012, 33(10):63-66,116.SUN Wei, LI Xiaojie, YAN Honghao, et al. Underwater explosive welding of NiTi alloy/copper foil[J]. Transactions of the China Welding Institution, 2012, 33(10):63-66,116.
    [4]杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016. 59(12):26-31.YANG Qiang, LU Zhongliang, HUANG Fuxiang, et al. Research on status and development trend of laser additive manufacturing[J].Aeronautical Manufacturing Technology, 2016, 59(12):26-31.
    [5] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016. 117:371-392.
    [6]闫岸如,杨恬恬,王燕灵,等.选区激光熔化不同层厚镍的热特性与机械性能[J].中国激光,2016, 43(2):74-82.YAN An'ru, YANG Tiantian, WANG Yanling, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 2016,43(2):74-82.
    [7]赵兴科.钛镍记忆合金增材制造技术研究进展及其在航空领域的应用前景[J].航空制造技术,2016, 59(12):34-41,48.ZHAO Xingke. Additive manufacturing NiTi shape memory alloy and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12):34-41, 48.
    [8] HAMILTON R F, BIMBER B A, ANDANI M T, et al.Multiscale shape memory effect recovery in Ni-Ti alloys additive manufactured by selective laser melting and laser directed energy deposition[J]. Journal of Materials Processing Technology, 2017, 250:55-64.
    [9] SAFDEL A, ZAREI-HANZAKI A, SHAMSOLHODAEI A, et al. Room temperature superelastic responses of NiTi alloy treated by two distinct thermomechanical processing schemes[J]. Materials Science&Engineering A, 2017, 684:303-311.
    [10] MITWALLY ME, FARAG M. Effect of cold work and annealing on the structure andcharacteristics of NiTi alloy[J]. Materials Science and Engineering, A, 2009, 519(1-2):155-166.
    [11]郑玉峰,LIU Yinong.工程用钛镍合金[M].北京:科学出版社,2014.ZHENG Yufeng, LIU Yinong. Titanium-nickel alloy for engineering[M]. Beijing:Science Press, 2014.
    [12] ACHARYAR, SHARON J A, STAROSELSKY A. Prediction of microstructure in laser powder bed fusion process[J]. Acta Materialia,2017, 124:360-371.
    [13] SHERIF M M, OZBULUT O E. Tensile and superelastic fatigue characterization of NiTi shape memory cables[J]. Smart Materials and Structures, 2017, 27(1):015007.
    [14] SAEDI S, MOGHADDAM N S, AMERINATANZI A,et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi[J]. Acta Materialia, 2018, 144:552-560.
    [15]陈旭斌,葛翔,祝毅,等.选择性激光熔化零件微观结构及摩擦学性能研究[J].机械工程学报,2018, 54(3):63-72.CHEN Xubin, GE Xiang, ZHU Yi, et al. A study on microstructure and tribology performance of samples processed by selective laser melting(SLM)[J]. Journal of Mechanical Engineering, 2018, 54(3):63-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700