基于响应面模型的钢轨打磨廓形预测方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A prediction method of rail profile based on response surface model
  • 作者:刘冲 ; 杨岳 ; 丘文生 ; 周鹏刚 ; 易兵
  • 英文作者:LIU Chong;YANG Yue;QIU Wensheng;ZHOU Penggang;YI Bing;School of Traffic and Transportation Engineering, Central South University;Guangzhou Heavy Railway Maintenance Machinery Operation and Maintenance Depot Guangzhou Railway Group;China Railway Construction High-Tech Equipment Co., Ltd;
  • 关键词:钢轨打磨量 ; 三次样条插值 ; 响应面模型 ; 廓形预测
  • 英文关键词:the amount of rail grinding;;cubic spline interpolation;;response surface model;;rail profile prediction
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:中南大学交通运输工程学院;广铁铁路(集团)公司广州大型养路机械运用检修段;中国铁建高新装备股份有限公司;
  • 出版日期:2018-02-15
  • 出版单位:铁道科学与工程学报
  • 年:2018
  • 期:v.15;No.95
  • 基金:国家自然科学基金资助项目(51605495);; 湖南省自然科学基金资助项目(2015JJ2168)
  • 语种:中文;
  • 页:CSTD201802008
  • 页数:8
  • CN:02
  • ISSN:43-1423/U
  • 分类号:66-73
摘要
由于钢轨初始廓形及打磨工况的差异,现有方法难以准确预测多个砂轮组合打磨形成的钢轨打磨廓形。为此,提出一种基于响应面模型的钢轨打磨廓形预测方法。通过采集钢轨廓形的离散数据点,引入3次样条插值方法对打磨前的钢轨廓形进行数学描述。以打磨功率和砂轮倾角为设计变量,构建以打磨量为响应量的3阶响应面模型。基于钢轨打磨廓形成形机理,设计打磨廓形的数值计算方案,实现多个砂轮组合作用下的钢轨打磨廓形预测。通过工程实例,结合现行钢轨打磨验收标准,验证上述方法的准确性和可靠性。
        Rail grinding is significant for restoring the rail profile. Due to the difference of initial rail profiles and grinding conditions, it is difficult to accurately predict the grinding profile of the rail formed by the combination of multiple grinding wheels before grinding in current approaches. Therefore, a new prediction method for grinding rail profile was proposed to solve this problem based on response surface model(RSM). After the collection of discrete points data of rail profiles, the method of cubic spline interpolation was brought up to illustrate the profile of rail before grinding. Taking the grinding power and the inclination angle of the grinding wheel as design variables, then, a third-order response surface model was established with the amount of grinding being the response. Based on the formation mechanism of the rail grinding profile, the numerical calculation scheme of the grinding profile was designed, and the grinding profile of the rail under the combination of multiple grinding wheels was worked out. According to some engineering tests, the accuracy and reliability of the method were verified according to the current rail grinding acceptance criteria.
引文
[1]贺振中.国外钢轨打磨技术的应用与思考[J].中国铁路,2000(10):38-40.HE Zhenzhong.Application and thinking of rail grinding technology abroad[J].Chinese Railways,2000(10):38-40.
    [2]李海滨,唐松柏.GMC96B型钢轨打磨列车试验研究[J].铁道技术监督,2011,39(12):38-44.LI Haibin,TANG Songbai.Experimental study on the GMC96B rail grinding train[J].Railway Quality Control,2011,39(12):38-44.
    [3]Grassie S L.Rail corrugation:Advances in measurement,understanding and treatment[J].Wear Contact Mechanics and Wear of Rail/Wheel Systems,2005,258(7/8):1224-1234.
    [4]Schoech W.New rail maintenance trends in Europe:anti-headcheck-profiles and preventive cyclical grinding[C]//Aus RAIL PLUS 2009.Adelaide South Australia:ARRB Library,2009:1-8.
    [5]金学松,杜星,郭俊,等.钢轨打磨技术研究进展[J].西南交通大学学报,2010,45(1):1-11.JIN Xuesong,DU Xing,GUO Jun,et al.State of arts of research on rail grinding[J].Journal of Southwest Jiaotong University,2010,45(1):1-11.
    [6]Hyde P.Numerical techniques for optimising rail grinding[D].Newcastle:Newcastle University,2011.
    [7]何娟娟.钢轨打磨参数对打磨量影响与打磨模式研究[D].北京:北京交通大学,2014.HE Juanjuan.Research on the effect of rail grinding parameters on grinding quantity and grinding mode[D].Beijing:Beijing Jiaotong University,2014.
    [8]曹垚鑫.钢轨打磨列车打磨模式研究[D].北京:北京交通大学,2011.CAO Yaoxin.Research on grinding mode of the rail grinding train[D].Beijing:Beijing Jiaotong University,2011.
    [9]TB/T 2344—2012,43~75 kg/m钢轨订货技术条件[S].TB/T 2344—2012,43~75 kg/m technical specification for rail order[S].
    [10]李辉.3次样条插指函数的研究[D].北京:北京交通大学,2008.LI Hui.Study of cubic spline interpolation in power exponent form[D].Beijing:Beijing Jiaotong University,2007.
    [11]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.LI Qingyang,WANG Nengchao,YI Dayi.Numerical analysis[M].Beijing:Tsinghua University Press,2008.
    [12]肖杰灵,刘学毅.钢轨非对称廓型的设计方法[J].西南交通大学学报,2010,45(3):361-365.XIAO Jieling,LIU Xueyi.Design method of rail asymmetric silhouette[J].Journal of Southwest Jiaotong University,2010,45(3):361-365.
    [13]李玉强,崔振山,陈军,等.基于响应面模型的6σ稳健设计方法[J].上海交通大学学报,2006,40(2):201-205.LI Yuqiang,CUI Zhenshan,CHEN Jun,et al.Six sigma robust design methodology based on response surface model[J].Journal of Shanghai Jiantong University,2006,40(2):201-205.
    [14]ZENG W,YANG Y,XIE H,et al.CF-Kriging surrogate model based on the combination forecasting method[J].Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,2015,230(18):3274-3284.
    [15]华长权.GMC-96x型钢轨打磨列车打磨功率参数求取方法探讨[J].中国铁路,2014(12):56-58.HUA Changquan.Discussion on the calculation method of grinding power parameter of GMC-96x rail grinding vehicle[J].Chinese Railways,2014(12):56-58.
    [16]许永贤,曾树谷.客运专线钢轨打磨验收标准概述[J].铁道建筑,2006(6):62-65.XU Yongxian,ZENG Shugu.Summary of rail grinding acceptance standard for passenger dedicated railways[J].Railway Engineering,2006(6):62-65.
    [17]铁总运[2014]357号,高速铁路钢轨打磨管理办法[S].Document No.357th[2014],Administrative measures for rail grinding of high speed railways[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700