激光冲击690高强钢表面残余应力工艺优化模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization and simulation of residual stress on surface of690 high strength steel by laser shocking
  • 作者:陈浩天 ; 曹宇鹏 ; 花国然 ; 杨聪 ; 葛良辰
  • 英文作者:Chen Haotian;Cao Yupeng;Hua Guoran;Yang Cong;Ge Liangchen;School of Mechanical Engineering,Nantong University;Jiangsu Five Star Corrugated Pipe Co.,Ltd.;Jiangsu Jianghua Valves Co.,Ltd.;
  • 关键词:690高强钢 ; 激光冲击 ; 光斑搭接率 ; 残余应力洞
  • 英文关键词:690 high strength steel;;laser shocking;;overlapping rate;;residual stress hole
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:南通大学机械工程学院;江苏五星波纹管有限公司;江苏江华阀业有限公司;
  • 出版日期:2018-10-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.494
  • 基金:国家自然科学基金(51505236);; 南通市应用基础研究项目(GY12016001)
  • 语种:中文;
  • 页:JSRC201810057
  • 页数:4
  • CN:10
  • ISSN:11-1860/TG
  • 分类号:213-216
摘要
为研究激光冲击对690高强钢表面残余应力尤其是"残余应力洞"的影响,在ANSYS/LSDYNA平台对690高强钢薄板经激光冲击后的残余应力进行模拟,优化光斑搭接率及激光功率密度。结果表明:采用搭接处理工艺,功率密度为1.98 GW/cm~2,在搭接率为33%、50%、66%时,激光冲击690高强钢表面最大残余压应力和光斑中心最小残余应力差值分别为275.6、241.6、238.3 MPa;搭接率的增加抑制了"残余应力洞";功率密度为2.77 GW/cm~2时,激光冲击表面残余应力优化结果最佳,达到211.0 MPa。
        In order to study the effect of laser shocking on the surface residual stress of 690 high strength steel,especially the"residual stress hole",the residual stress of 690 high strength steel sheet after laser shocking was simulated on ANSYS/LSDYNA platform to optimize the spot overlapping rate and laser power density.The results show that the maximum residual compressive stress on the surface of 690 high strength steel and the minimum residual stress difference at the center of the laser spot are 275.6,241.6 and 238.3 MPa,respectively,when the overlapping rate is 33%,50%and 66%,respectively,under 1.98 GW/cm~2power density.With overlapping rate increasing the"residual stress hole"phenomenon is restrain.When the power density is 2.77 GW/cm~2,the best residual stress optimization of laser shock on the surface reach 211.0 MPa.
引文
[1]王定亚,丁莉萍.海洋钻井平台技术现状与发展趋势[J].石油机械,2010,38(4):69-72.Wang Dingya,Ding Liping. Technology status and development trend of offshore drilling platform[J]. Petroleum Machinery,2010,38(4):69-72.
    [2]汪张棠,赵建亭.我国自升式钻井平台的发展与前景[J].中国海洋平台,2008,23(4):8-13.Wang Zhangtang,Zhao Jianting. The development and foreground of the self-elevation drilling platform in our country[J]. China Offshore Platform,2008,23(4):8-13.
    [3]狄国标,刘振宇,郝利强,等.海洋平台用钢的生产现状及发展趋势[J].机械工程材料,2008,32(8):1-3.Di Guobiao,Liu Zhenyu,Hao Liqiang,et al. Present production state and development tendency of offshore platform steels[J]. Materials for Mechanical Engineering,2008,32(8):1-3.
    [4]曹宇鹏,徐影,冯爱新,等.激光冲击强化7050铝合金薄板表面残余应力形成机制的实验研究[J].中国激光,2016,43(7):0702008.Cao Yupeng,Xu Ying,Feng Aixin,et al. Experimental study of the residual stress formation mechanism of 7050 aluminum alloy sheet by laser shock processing[J]. Chinese Journal of Lasers,2016,43(7):0702008.
    [5]曹宇鹏,周东呈,冯爱新,等.激光冲击波加载690高强钢薄板传播机制的模拟与实验[J].中国激光,2016,43(11):1102010.Cao Yupeng,Zhou Dongcheng,Feng Aixin,et al. Influence of laser shock peening on microstructure and property of cladding layer of 316L stainless steel[J]. Chinese Journal of Lasers, 2016, 43(11):1102010.
    [6]罗开玉,周阳,鲁金忠,等.激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J].中国激光,2017,44(4):0402005.Luo Kaiyu,Zhou Yang,Lu Jinzhong,et al. Influence of laser shock peening on microstructure and properties of 316L stainless steel cladding[J]. Chinese Journal of Lasers,2017,44(4):0402005.
    [7] Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. the Hague,Netherlands International Ballistics Committee,1983:541-547.
    [8]Peyre P,Fabbro R. Laser shock processing:a review of the physics and applications[J]. Optical and Quantum Electronics,1995,27(12):1213-1229.
    [9] Hong X,Wang S,Guo D,et al. Confining medium and absorptive overlay[J]. Optics and Lasers in Engineering,1998,29(6):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700