方形光斑激光冲击690高强钢表面残余应力分布模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of residual stress distribution on square spot laser shocked surface of 690 high strength steel
  • 作者:杨聪 ; 曹宇鹏 ; 花国然 ; 葛良辰
  • 英文作者:Yang Cong;Cao Yupeng;Hua Guoran;Ge Liangchen;School of Mechanical Engineering,Nantong University;School of Mechanical and Electrical Engineering,Wenzhou University;Nantong Institute of Material Engineering,Nanjing University;
  • 关键词:激光光学 ; 方形光斑 ; 激光冲击强化 ; 690高强钢 ; 残余应力洞
  • 英文关键词:laser optics;;square spot;;laser shock processing;;690 high strength steel;;hole of residual stress
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:南通大学机械工程学院;温州大学机电工程学院;南京大学南通材料工程技术研究院;
  • 出版日期:2018-11-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.495
  • 基金:国家自然科学基金(51505236);; 南通市应用基础研究项目(GY12016001)
  • 语种:中文;
  • 页:JSRC201811054
  • 页数:4
  • CN:11
  • ISSN:11-1860/TG
  • 分类号:229-232
摘要
为研究方形光斑激光冲击690高强钢表面残余应力的分布,在ANSYS/LSDYNA平台进行了二元光学衍射方形光斑激光冲击690高强钢薄板的残余应力分布模拟,并对其不同光斑搭接率处理工艺研究,得出了几种工艺下激光冲击690高强钢表面残余应力分布的云图和二元衍射光斑转换前后的残余应力分布曲线。结果表明,采用二元衍射光斑工艺进行激光冲击对于消除残余应力洞有较好效果;在33%、50%、66%这3种典型的搭接率下,二元光学衍射光斑周围区域残余应力分布比较均匀,且不同搭接率下的最大残余压应力和光斑中心最小残余压应力均相互接近,所以二元衍射光斑激光冲击690高强钢无需搭接处理。
        In order to study the distribution of the residual stress of 690 high-strength steel after the square spot laser shocking,the simulation of the residual stress distribution of the 690 high-strength steel sheet after the binary diffraction spot laser shock was carried out based on the platform of ANSYS/LSDYNA. The processing of different spot overlap rate was also studied. The nephogram of residual stress distribution on the surface of 690 high-strength steel after laser shock processing and the residual stress distribution curve before and after the conversion of the binary diffraction spot were obtained. The results show that laser shock using binary diffractive spot process has good effect on eliminating residual stress holes. In the 33%,50%,and 66% of the three typical overlap rates,the residual stress distribution around the binary optical diffraction spot is more uniform; The maximum residual compressive stress and the spot center minimum residual compressive stress under different overlap rates are all close to each other,so the spot overlap is not necessary for the binary diffraction spot laser shock.
引文
[1]曹宇鹏,徐影,冯爱新,等.激光冲击强化7050铝合金薄板表面残余应力形成机制的实验研究[J].中国激光,2016,43(7):133-140.Cao Yupeng,Xu Ying,Feng Aixin,et al.Experimental study on the formation mechanism of residual stress on the surface of 7050 aluminum alloy sheet by laser shock[J].Chinese Journal of Lasers,2016,43(7):133-140.
    [2]曹宇鹏,周东呈,冯爱新,等.激光冲击波加载690高强钢薄板传播机制的模拟与实验[J].中国激光,2016,43(11):129-138.Cao Yupeng,Zhou Dongcheng,Feng Aixin,et al.Simulation and experiment of laser shock wave loading mechanism of 690 high-strength steel sheet[J].China Laser,2016,43(11):129-138.
    [3]罗开玉,周阳,鲁金忠,等.激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J].中国激光,2017,44(4):61-68.Luo Kaiyu,Zhou Yang,Lu Jinzhong,et al.Effect of laser shock strengthening on microstructure and properties of 316L stainless steel cladding layer[J].China Laser,2017,44(4):61-68.
    [4]钱绍祥,殷晓中,王琦,等.激光冲击强化对AISI202不锈钢焊接接头残余应力的影响[J].金属热处理,2014,39(10):128-130.Qian Shaoxiang,Yin Xiaozhong,Wang Qi,et al.Influence of laser shock strengthening on residual stress of AISI202 stainless steel welded joints[J].Heat Treatment of Metals,2014,39(10):128-130.
    [5]段争涛,李艳梅,朱伏先,等.淬火温度对Q690D高强钢组织和力学性能的影响[J].金属热处理,2012,37(2):81-85.Duan Zhengtao,Li Yanmei,Zhu Fuxian,et al.Effect of quenching temperature on microstructure and mechanical properties of Q690D high strength steel[J].Heat Treatment of Metals,2012,37(2):81-85.
    [6]麻庆申,张苏渊,刘春明,等.轧态组织对高强钢调质处理后性能的影响[J].金属热处理,2015,40(1):39-41.Ma Qingshen,Zhang Suyuan,Liu Chunming,et al.Effect of rolled microstructure on properties of high strength steel after quenching and tempering treatment[J].Heat Treatment of Metals,2015,40(1):39-41.
    [7]陆恒昌,邢淑清,陈重毅,等.调质态Q690D高强钢GMAW多道次焊接组织与性能[J].金属热处理,2014,39(10):120-124.Lu Hengchang,Xing Shuqing,Chen Chongyi,et al.Microstructure and properties of GMAW multi-pass welding of quenched and tempered Q690D high strength steel[J].Heat Treatment of Metals,2014,39(10):120-124.
    [8]张凌峰,熊毅,张毅,等.高锰钢在激光冲击作用下的微观特征[J].中国激光,2011,38(6):226-229.Zhang Lingfeng,Xiong Yi,Zhang Yi,et al.Microscopic characteristics of high manganese steel under laser shock[J].China Journal of Laser,2011,38(6):226-229.
    [9]李兴成,张永康,卢雅琳,等.激光冲击AZ31镁合金抗腐蚀性能研究[J].中国激光,2014,41(4):56-61.Li Xingcheng,Zhang Yongkang,Lu Yalin,et al.Study on Corrosion Resistance of Laser Shocked AZ31 Magnesium Alloy[J].China Laser,2014,41(4):56-61.
    [10]徐士东,任旭东,周王凡,等.GH2036合金激光冲击胞-晶细化与位错强化机理研究[J].中国激光,2016,43(1):40-45.Xu Shidong,Ren Xudong,Zhou Wangfan,et al.Study on laser-cell refinement and dislocation strengthening mechanism of GH2036 alloy[J].China Laser,2016,43(1):40-45.
    [11]殷苏民,汪伟力,钱绍祥,等.基于ABAQUS的2A11铝焊接结构激光冲击处理数值模拟[J].金属热处理,2015,40(9):198-202.Yin Sumin,Wang Weili,Qian Shaoxiang,et al.Numerical simulation of laser shock treatment of 2A11 aluminum welded structure based on ABAQUS[J].Heat Treatment of Metals,2015,40(9):198-202.
    [12]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.the Hague,Netherlands International Ballistics Committee,1983:541-547.
    [13]Peyre P,Fabbro R.Laser shock processing:a review of the physics and applications[J].Optical and Quantum Electronics,1995,27(12):1213-1229.
    [14]Hong X,Wang S,Guo D,et al.Confining medium and absorptive overlay[J].Optics and Lasers in Engineering,1998,29(6):447-455.
    [15]聂祥樊,臧顺来,何卫锋,等.激光冲击“残余应力洞”的参数敏感性分析及其抑制方法[J].高电压技术,2014,40(7):2107-2112.Nie Xiangfan,Zang Shunlai,He Weifeng,et al.Parameter sensitivity analysis and suppression method of laser residual“residual stress cave”[J].High Voltage Engineering,2014,40(7):2107-2112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700