7B50超高强铝合金喷水淬火过程综合表面换热系数的计算(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computation of synthetic surface heat transfer coefficient of 7B50 ultra-high-strength aluminum alloy during spray quenching
  • 作者:康雷 ; 赵刚 ; 田妮 ; 张海涛
  • 英文作者:Lei KANG;Gang ZHAO;Ni TIAN;Hai-tao ZHANG;Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education,School of Materials Science and Engineering, Northeastern University;Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education,School of Materials Science and Engineering, Northeastern University;
  • 关键词:7B50铝合金 ; 表面喷水淬火 ; 反传热原理 ; 综合表面换热系数 ; 冷却曲线
  • 英文关键词:7B50 aluminum alloy;;water-spray quenching;;inverse heat transfer theory;;synthetic surface heat transfer coefficient;;cooling curve
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室;东北大学东北大学材料科学与工程学院材料电磁过程研究教育部重点实验室;
  • 出版日期:2018-05-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2018
  • 期:v.28
  • 基金:Project(2016YFB0300801)supported by the National Key Research and Development Program of China;; Project(51371045)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201805019
  • 页数:9
  • CN:05
  • ISSN:43-1239/TG
  • 分类号:166-174
摘要
采用改进型Jominy样品精确测定7B50合金厚板喷水淬火时样品内部的温度场(冷却曲线),并利用JMat Pro软件获得7B50合金热物性参数随温度的变化关系。以反传热原理为基础,采用ProCAST有限元软件计算得到喷水淬火时淬火表面的综合表面换热系数的变化规律。结果表明:喷水淬火时,距淬火表面6 mm处,淬火敏感温度区间(420~230°C)内的平均冷却速率为45.78°C/s;喷水淬火开始0.4 s时,综合表面换热系数达到峰值69 kW/(m~2·K),此时对应的淬火表面温度为160°C;喷水淬火初期,淬火表面中心的冷却曲线上出现"温度平台"现象,平台对应的温度范围为160~170°C,持续时间约为3 s;在温度平台持续期间,淬火表面的换热机制从核态沸腾阶段转变为对流换热阶段。
        According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 °C(quench sensitive temperature range) is 45.78 °C/s. The peak-value of the SSHTC is 69 kW/(m~2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 °C. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170 °C with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
引文
[1]ZHANG Y H,YANG S C,JI H Z.Microstructure evolution in cooling process of Al-Zn-Mg-Cu alloy and kinetics description[J].Transactions of Nonferrous Metals Society of China,2012,22(9):2087-2091.
    [2]LI P Y,XIONG B Q,ZHANG Y A,LI Z H,ZHU B H,WANG F,LIU H W.Quench sensitivity and microstructure character of high strength AA7050[J].Transactions of Nonferrous Metals Society of China,2012,22(2):268-274.
    [3]DURSUN T,SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J].Materials and Design,2014,56(4):862-871.
    [4]HEINZ A,HASZLER A,KEIDEL C,MOLDENHAUER S,BENEDICTUS R,MILLER W S.Recent development in aluminium alloys for aerospace applications[J].Materials Science and Engineering A,2000,280(1):102-107.
    [5]LIU S D,ZHONG Q M,ZHANG Y,LIU W J,ZHANG X M,DENG Y L.Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams[J].Materials and Design,2010,31(6):3116-3120.
    [6]ROMETSCH P A,ZHANG Y,KNIGHT S.Heat treatment of 7xxx series aluminium alloys—Some recent developments[J].Transactions of Nonferrous Metals Society of China,2014,24(7):2003-2017.
    [7]ROBINSON J S,TANNER D A,TRUMAN C E,PARADOWSKA A M,WIMPORY R C.The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075[J].Materials Characterization,2012,65(3):73-85.
    [8]YANG X W,ZHU J C,NONG Z S,LAI Z H,HE D.FEM simulation of quenching process in A357 aluminum alloy cylindrical bars and reduction of quench residual stress through cold stretching process[J].Computational Materials Science,2013,69(1):396-413.
    [9]TANNER D A,ROBINSON J S.Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010in the W-temper[J].Journal of Materials Processing Technology,2004,153-154(22):998-1004.
    [10]SUGIANTO A,NARAZAKI M,KOGAWARA M,SHIRAYORI A.A comparative study on determination method of heat transfer coefficient using inverse heat transfer and iterative modification[J].Journal of Materials Processing Technology,2009,209(10):4627-4632.
    [11]MAHONEY D O,BROWNE D J.Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process[J].Experimental Thermal and Fluid Science,2000,22(3-4):111-122.
    [12]RAUDENSKY M.Heat transfer coefficient estimation by inverse conduction algorithm[J].International Journal of Numerical Methods for Heat and Fluid Flow,1993,3(3):257-266.
    [13]FAN C L,SUN F R,YANG L.A numerical method on inverse determination of heat transfer coefficient based on thermographic temperature measurement[J].Chinese Journal of Chemical Engineering,2008,16(6):901-908.
    [14]NARAZAKI M,KOGAWARA M,QIN M,WATANABE Y.Measurement and database construction of heat transfer coefficients of gas quenching[J].Journal of Mechanical Engineering,2009,55(3):167-173.
    [15]CHEN H T,HSU W L.Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings[J].International Journal of Heat and Mass Transfer,2007,50(9-10):1750-1761.
    [16]NIKOLIC Z S,YOSHIMURA M,ARAKI S,FUJIWARA T.Finite difference method for computer study of the interfacial heat transfer coefficient during rapid solidification of spherical samples on a metallic substrate[J].Science of Sintering,2007,39(2):111-116.
    [17]ONYANGO T T M,INGHAM D B,LESNIC D.Reconstruction of heat transfer coefficients using the boundary element method[J].Computers and Mathematics with Applications,2008,56(1):114-126.
    [18]ONYANGO T T M,INGHAM D B,LESNIC D.Inverse reconstruction of boundary condition coefficients in one-dimensional transient heat conduction[J].Applied Mathematics and Computation,2009,207(2):569-575.
    [19]SABLANI S S,KACIMOV A,PERRET J,MUJUMDAR A S,CAMPO A.Non-iterative estimation of heat transfer coefficients using artificial neural network models[J].International Journal of Heat and Mass Transfer,2005,48(3-4):665-679.
    [20]XIAO B W,WANG Q G,JADHAV P,LI K Y.An experimental study of heat transfer in aluminum castings during water quenching[J].Journal of Materials Processing Technology,2010,210(14):2023-2028.
    [21]XU R,LI L X,ZHANG L Q,ZHU B W,LIU X,BU X B.Influence of pressure and surface roughness on the heat transfer efficiency during water spray quenching of 6082 aluminum alloy[J].Journal of Materials Processing Technology,2014,214(12):2877-2883.
    [22]ULYSSE P,SCHULTZ R W.The effect of coatings on the thermo-mechanical response of cylindrical specimens during quenching[J].Journal of Materials Processing Technology,2008,204(1-3):39-47.
    [23]LI H P,ZHAO G Q,HUANG C Z,NIU S T.Technological parameters evaluation of gas quenching based on the finite element method[J].Computational Materials Science,2007,40(2):282-291.
    [24]KANG Lei,ZHAO Gang,TIAN Ni,LIU Kun.Research on a new method of axial temperature field determination during aluminum alloy end quenching[J].Light Alloy Fabrication Technology,2013,41(10):45-49.(in Chinese)
    [25]NEWKIRK J W,MACKENZIE D S.The Jominy end quench for light-weight alloy development[J].Journal of Materials Engineering and Performance,2000,9(4):408-415.
    [26]FRANCO F A,GONZALEZ M F R,CAMPOS M F D,PADOVESE L R.Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels[J].Journal of Nondestructive Evaluation,2013,32(1):93-103.
    [27]CAKIR M,OZSOY A.Investigation of the correlation between thermal properties and hardenability of Jominy bars quenched with air-water mixture for AISI 1050 steel[J].Materials and Design,2011,32(5):3099-3105.
    [28]ZHANG Xin-ming,LIU Wen-jun,LIU Sheng-dan,YUAN Yu-bao,DENG Yun-lai.TTP curve of aluminum alloy 7050[J].The Chinese Journal of Nonferrous Metals,2009,19(5):861-868.(in Chinese)
    [29]LI Pei-yue,XIONG Bai-qing,ZHANG Yong-an,LI Zhi-hui,ZHU bao-hong,WANG Feng,LIU Hong-wei.Hardenability characteristic and microstructure of 7050 Al alloy[J].The Chinese Journal of Nonferrous Metals,2011,21(3):513-521.(in Chinese)
    [30]WEN Liu,LIU Lu-lu,GAO Meng,PAN Xue-zhu,WANG Ying-xin,CHEN Bin,WANG Meng-jun.Surface heat transfer coefficient of6061 aluminum alloy during quenching[J].Heat Treatment of Metals,2011,36(10):59-62.(in Chinese)
    [31]XIONG Chuang-xian,DENG Yun-lai,ZHANG Jin,ZHANG Xin-ming.Thermal simulation on surface heat transfer coefficient during quench of 7050 Al alloy by water spraying[J].Materials Science and Engineering of Powder Metallurgy,2010,15(5):421-426.(in Chinese)
    [32]DENG Yun-lai,GUO Shi-gui,XIONG Chuang-xian,ZHANG Xin-ming.Effect of water spraying parameters on heat transfer coefficient of 7050 aluminum alloy during quench[J].Journal of Aeronautical Materials,2010,30(6):21-26.(in Chinese)
    [33]CHEN Bin,GAO Meng,WEN Liu,PAN Xue-zhu,WANG Ying-xin,WANG Meng-jun.Experiment and finite element simulation of online quenching process for 6063 aluminum alloy[J].Light Alloy Fabrication Technology,2012,40(3):55-59.(in Chinese)
    [34]XIONG Chuang-xian,DENG Yun-lai,CAO Sheng-qiang,ZHANG Xin-ming.Compared two methods of inverse heat transfer coefficient for thick-plate quenching[J].Heat Treatment of Metals,2011,36(12):112-117.(in Chinese)
    [35]BUCZEK A,TELEJKO T.Inverse determination of boundary conditions during boiling water heat transfer in quenching operation[J].Journal of Materials Processing Technology,2004,155-156(6):1324-1329.
    [36]YANG Shi-ming,TAO Wen-quan.Heat transfer[M].3rd ed.Beijing:Higher Education Press,1998.(in Chinese)
    [37]YU Jing-lu,WEI Ji-he.Heat and mass transfer in metallurgy[M].Beijing:Metallurgical Industry Press,1981.(in Chinese)
    [38]XU F C,GADALA M S.Heat transfer behavior in the impingement zone under circular water jet[J].International Journal of Heat and Mass Transfer,2006,49(21-22):3785-3799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700