基于改进SFR模型的含风电虚拟惯性/一次调频电力系统频率响应特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Frequency characteristics of power system involving virtual inertia and primary frequency regulation of wind power based on modified SFR model
  • 作者:李世春 ; 曹润杰 ; 雷小林 ; 李振兴 ; 刘道兵
  • 英文作者:Li Shichun;Cao Runjie;Lei Xiaolin;Li Zhenxing;Liu Daobing;College of Electrical Engineering & Renewable Energy, China Three Gorges University;
  • 关键词:虚拟惯性时间常数 ; 一次调频辅助控制 ; 改进SFR模型
  • 英文关键词:virtual inertia time constant;;primary frequency regulation auxiliary control;;modified SFR model
  • 中文刊名:NCNY
  • 英文刊名:Renewable Energy Resources
  • 机构:三峡大学电气与新能源学院;
  • 出版日期:2019-05-16
  • 出版单位:可再生能源
  • 年:2019
  • 期:v.37;No.249
  • 基金:国家自然科学基金项目(51407104);; 湖北省微电网工程技术研究中心(三峡大学)开放基金(2016KDW01);; 三峡大学高层次人才科研启动基金(1910103)
  • 语种:中文;
  • 页:NCNY201905011
  • 页数:7
  • CN:05
  • ISSN:21-1469/TK
  • 分类号:66-72
摘要
文章利用等效虚拟惯性时间常数定量表征风电场惯性响应,采用传递函数模型描述风电场一次调频响应,结合再热式火电机组和水电机组的原动机-调速器模型,针对含多个风电场/火电机组/水电机组的电力系统提出了改进SFR解析计算等值模型,用于分析计算含风电虚拟惯性响应和一次调频的电网频率响应特性。仿真结果表明,改进SFR模型能更真实地反映含风电惯性/一次调频响应作用的电力系统频率特性,为客观评估高风电渗透率下的电力系统频率稳定运行状态提供了理论基础。
        In this study, the inertial response of wind farm is expressed quantitatively utilizing the equivalent inertia time constant, and the primary frequency response of wind farm is described employing transfer function model. Furthermore, combining with prime mover-governor model of reheat thermal power units and hydropower units, the modified SFR(System Frequency Response)analytical calculation equivalent model is established finally towards the power system comprising multiple wind farms, thermal power units and hydropower units, which is used to analysis and calculate frequency-response characteristic of power system incorporating virtual inertial response and primary frequency modulation of wind farm. The simulation results show that the frequencyresponse characteristic of power system incorporating virtual inertial response and primary frequency modulation of wind farm was presented more really using the modified SFR model,which provides a theoretical basis for objectively assessing frequency stability of power system with high wind power penetration.
引文
[1]袁小明,程时杰,胡家兵.电力电子化电力系统多尺度电压功角动态稳定问题[J].中国电机工程学报,2016,36(19):5145-5154.
    [2] Li S,Deng C,Shu Z,et al. Equivalent inertial time constant of doubly fed induction generator considering synthetic inertial control[J]. Journal of Renewable&Sustainable Energy,2016,8(5):1-7.
    [3] Toulabi M, Bahrami S, Ranjbar A. An input-tostate stability approach to inertial frequency response analysis of doubly fed induction generator based wind turbines[J]. IEEE Transactions on Energy Conversion,2017, 32(4):1418-1431.
    [4] Wang D, Ma N, Gao Y, et al. Participation in primary frequency regulation of wind turbines using hybrid control method[J].International Transactions on Electrical Energy Systems,2018,28(4):2527-2533.
    [5]蒋佳良,晁勤,陈建伟,等.不同风电机组的频率响应特性仿真分析[J].可再生能源,2010,28(3):24-28.
    [6]赵斌,李红军,杨超,等.双馈风电场有功频率分层控制[J].可再生能源,2017,35(3):411-418.
    [7] Wang S,Hu J,Yuan X,et al. On inertial dynamics of virtual-synchronous-controlled DFIG-based wind turbines[J].IEEE Transactions on Energy Conversion,2015,30(4):1-12.
    [8]董贺贺,张延迟,杨宏坤,等.基于双馈感应风机的虚拟惯量控制研究[J].可再生能源,2016,34(8):1174-1179.
    [9] Miller N W, Price W W, Sanchez Gasca J J. Dynamic modeling of GE 1.5 and 3.6 wind turbine-generators[R].Boston:GE Power Systems Energy Consulting,2003.
    [10] Fischer M,Engelken S,Mihov N,et al. Operational experiences with inertial response provided by type 4wind turbines[J].IET Renewable Power Generation,2016,10(1):17-24.
    [11] Asmine M,Langlois C.Field measurements for the assessment of inertial response for wind power plants based on Hydro-Québec Transénergie requirements[J].IET Renewable Power Generation,2016,10(1):25-32.
    [12]国家电网报.中国电科院完成国内首次风电机组一次调频能力试验[EB/OL].http://www.epri.sgcc. com.cn/html/epri/col1010000052/2016-08/25.html,2016-08-24.
    [13] Ghosh S,Kamalasadan S,Senroy N,et al.Doubly fed induction generator(DFIG)-based wind farm control framework for primary frequency and inertial response application[J].IEEE Transactions on Power Systems,2015,1(7):1723-1727.
    [14] Yan R,Saha T K.Frequency response estimation method for high wind penetration considering wind turbine frequency support functions[J].IET Renewable Power Generation,2015,9(7):775-782.
    [15]李世春,邓长虹,龙志君,等.风电场等效虚拟惯性时间常数计算[J].电力系统自动化,2016(7):22-29.
    [16] Akbari M,Madani S M. Analytical evaluation of control strategies for participation of doubly fed induction generator-based wind farms in power system short-term frequency regulation[J].IET Renewable Power Generation,2014,8(3):324-333.
    [17] Anderson P M,Mirheydar M. A low-order system frequency response model[J].Power Systems IEEE Transactions on,1990,5(3):720-729.
    [18] Morren J.Grid support by power electronic converters of distributed generation units[R].Delft:Electrical Engineering Mathematics&Computer Science,2006.
    [19]李世春,黄悦华,王凌云,等.基于转速控制的双馈风电机组一次调频辅助控制系统建模[J].中国电机工程学报,2017,37(24):7077-7086,7422.
    [20]晁璞璞,李卫星,金小明.关于双馈风电场动态等值的认识和探讨[J].电力系统自动化,2016,40(12):194-199.
    [21]何桂雄,晁勤,田易之,等.风电场恒速发电机动态等值参数聚合的研究[J].可再生能源,2009,27(1):14-18.
    [22]杜晓岩,尹华杰,叶超,等.基于改进模糊C均值聚类和MPSO的风电场等值研究[J].广东电力,2016, 29(8):38-44.
    [23]昆德.电力系统稳定与控制[M].北京:中国电力出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700