粉末冶金法结合热挤压制备Cu-15Ni-8Sn-0.3Nb合金的时效硬化行为与显微组织(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Age-hardening behavior and microstructure of Cu-15Ni-8Sn-0.3Nb alloy prepared by powder metallurgy and hot extrusion
  • 作者:欧阳亦 ; 甘雪萍 ; 张世忠 ; 李周 ; 周科朝 ; 姜业欣 ; 张县委
  • 英文作者:Yi OUYANG;Xue-ping GAN;Shi-zhong ZHANG;Zhou LI;Ke-chao ZHOU;Ye-xin JIANG;Xian-wei ZHANG;State Key Laboratory of Powder Metallurgy,Central South University;School of Materials Science and Engineering,Central South University;CNMC Albetter Albronze Co.,Ltd.;
  • 关键词:Cu-15Ni-8Sn-0.3Nb合金 ; 粉末冶金法 ; 热挤压 ; 时效处理 ; 调幅分解 ; 显微组织 ; 力学性能
  • 英文关键词:Cu-15Ni-8Sn-0.3Nb alloy;;powder metallurgy method;;hot extrusion;;aging treatment;;spinodal decomposition;;microstructure;;mechanical properties
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学粉末冶金国家重点实验室;中南大学材料科学与工程学院;中色奥博特铜铝业有限公司;
  • 出版日期:2017-09-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2017
  • 期:v.27
  • 基金:Project (2016YFB0301400) supported by the National Key Research and Development Program of China;; Project (9140A12040515QT48167) supported by the Pre-research Fund of the General Armaments Department of China;; Project (CSU20151024) supported by the Innovation-driven Plan of Central South University,China
  • 语种:英文;
  • 页:ZYSY201709005
  • 页数:9
  • CN:09
  • ISSN:43-1239/TG
  • 分类号:47-55
摘要
采用粉末冶金法结合热挤压制备Cu-15Ni-8Sn-0.3Nb合金棒材。利用电子探针获得的元素分布图显示,在合金基体中生成了分布在晶界与晶内的富Nb析出相。透射电镜分析表明,富Nb析出相与合金基体之间无明确位向关系。合金在400°C时效早期发生调幅分解和有序化,使其强度迅速升高。Cu-15Ni-8Sn-0.3Nb合金比Cu-15Ni-8Sn合金具有更高的强度(抗拉强度>1030 MPa)和更好的延性(伸长率>9.1%),这是由于添加Nb元素后生成的富Nb析出相能细化合金组织,抑制时效过程中的胞状析出。
        Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion. Element maps obtained by electron probe micro analyzer(EPMA) showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy. Transmission electron microscope(TEM) results indicated that there was no obvious orientation relationship between these phases and the matrix. Spinodal decomposition and ordering transformation appeared at early stages of aging at 400 °C and caused significant strengthening. Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength >1030 MPa) and higher tensile ductility(elongation>9.1%) than Cu-15Ni-8Sn alloy after aging treatment. The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.
引文
[1]SINGH J B,CAI W,BELLON P.Dry sliding of Cu-15wt%Ni-8wt%Sn bronze:Wear behaviour and microstructures[J].Wear,2007,263(1):830-841.
    [2]HERMANN P H,MORRIS D G.Relationship between microstructure and mechanical properties of a spinodally decomposing Cu-15Ni-8Sn alloy prepared by spray deposition[J].Metallurgical and Materials Transactions A,1994,25(7):1403-1412.
    [3]FANG S F,WANG M P,WANG Y H,QI W H,LI Z.Evolutionary artificial neural network approach for predicting properties of Cu-15Ni-8Sn-0.4Si alloy[J].Transactions of Nonferrous Metals Society of China,2008,18(5):1223-1228.
    [4]GAHN J W.Hardening by spinodal decomposition[J].Acta Metallurgica,1963,11(12):1275-1282.
    [5]CARPENTER R W.Deformation and fracture of gold-platinum polycrystals strengthened by spinodal decomposition[J].Acta Metallurgica,1967,15(8):1297-1308.
    [6]SCHWARTZ L H,PLEWES J T.Spinodal decomposition in Cu-9wt%Ni-6wt%Sn—II.A critical examination of mechanical strength of spinodal alloys[J].Acta Metallurgica,1974,22(7):911-921.
    [7]SATO A,TAMURA K,ITO M,KATO M,MORI T.In situ observation of moving dislocations in a Cu-10Ni-6Sn spinodal alloy[J].Acta Metallurgica et Materialia,1993,41(4):1047-1055.
    [8]SAHU P,PRADHAN S K,DE M.X-ray diffraction studies of the decomposition and microstructural characterization of cold-worked powders of Cu-15Ni-Sn alloys by Rietveld analysis[J].Journal of Alloys and Compounds,2004,377(1):103-116.
    [9]RHU J C,KIM S S,JUNG Y C,HAN S Z,KIM C J.Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys[J].Metallurgical and Materials Transactions A,1999,30(10):2649-2657.
    [10]WESTRAADT J E,OLIVIER E J,NEETHLING J H,HEDSTROM P,ODQVIST J,XU X,STEUWER A.A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe-Cr[J].Materials Characterization,2015,109:216-221.
    [11]SCHWARTZ L H,MAHAJAN S,PLEWES J T.Spinodal decomposition in a Cu-9wt%Ni-6wt%Sn alloy[J].Acta Metallurgica,1974,22(5):601-609.
    [12]CARIS J,VARADARAJAN R,STEPHENS J J,LEWANDOWSKI J J.Microstructural effects on tension and fatigue behavior of Cu-15Ni-8Sn sheet[J].Materials Science and Engineering A,2008,491(1):137-146.
    [13]DITCHEK B,SCHWARTZ L H.Diffraction study of spinodal decomposition in Cu-10wt%Ni-6wt%Sn[J].Acta Metallurgica,1980,28(6):807-822.
    [14]LEFEVRE B G,D'ANNESSA A T,KALISH D.Age hardening in Cu-15Ni-8Sn alloy[J].Metallurgical Transactions A,1978,9(4):577-586.
    [15]SPOONER S,LEFEVRE B G.The effect of prior deformation on spinodal age hardening in Cu-15Ni-8Sn alloy[J].Metallurgical Transactions A,1980,11(7):1085-1093.
    [16]KROTACHVIL P,MENCL J,PESICKA J,KOMNIK S N.The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys[J].Acta Metallurgica,1984,32(9):1493-1497.
    [17]ZHAO J C,NOTIS M R.Spinodal decomposition,ordering transformation,and discontinuous precipitation in a Cu-15Ni-8Sn alloy[J].Acta Materialia,1998,46(12):4203-4218.
    [18]SCOREY C R,CHIN S,WHITE M J,LIVAK R J.Spinodal Cu-Ni-Sn alloys for electronic applications[J].Journal of Materials,1984,36(11):52-54.
    [19]KIM H Y,JINGUU T,NAM T H,MIYAZAKI S.Cold workability and shape memory properties of novel Ti-Ni-Hf-Nb hightemperature shape memory alloys[J].Scripta Materialia,2011,65(9):846-849.
    [20]HSIEH S F,WU S K,LIN H C,YANG C H.Transformation sequence and second phases in ternary Ti-Ni-W shape memory alloys with less than 2at.%W[J].Journal of Alloys and Compounds,2005,387(1):121-127.
    [21]NING Y,ZHOU C,LIANG H,FU M W.Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries(PPBs)[J].Materials Science and Engineering A,2016,652:84-91.
    [22]ALILI B,BRADAI D,ZIEBA P.On the discontinuous precipitation reaction and solute redistribution in a Cu-15%Ni-8%Sn alloy[J].Materials Characterization,2008,59(10):1526-1530.
    [23]LI R,DUAN Y.Electronic structures and thermodynamic properties of Hf Al3 in L12,DO22 and DO23 structures[J].Transactions of Nonferrous Metals Society of China,2016,26(9):2404-2412.
    [24]ZHANG M Y,LI Z G,ZHANG J L,ZHANG H Z,CHEN Z,ZHANG J Z.Site occupation evolution of alloying elements in Ni3V phase during phase transformation in Ni75Al4.2V20.8[J].Transactions of Nonferrous Metals Society of China,2015,25(5):1599-1604.
    [25]VERHOEVEN J D,DOWNING H L,CHUMBLEY L S,GIBSON E D.The resistivity and microstructure of heavily drawn Cu-Nb alloys[J].Journal of Applied Physics,1989,65(3):1293-1301.
    [26]YANG G J,HAO S M.Study on the phase equilibria of the Ti-Ni-Nb ternary system at 900°C[J].Journal of Alloys and Compounds,2000,297(1):226-230.
    [27]MIDGLEY P A,WEYLAND M.3D electron microscopy in the physical sciences:The development of Z-contrast and EFTEM tomography[J].Ultramicroscopy,2003,96(3):413-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700