纳米场效应晶体管生物传感器在肿瘤早期检测中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of nanomaterial-based field effect transistor biosensor in the early detection of tumor
  • 作者:尹长青 ; 许壁榆 ; 罗振钊 ; 熊阿莉 ; 郑超
  • 英文作者:YIN Changqing;XU Biyu;LUO Zhenzhao;XIONG Ali;ZHENG Chao;Dept. of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology;Dept. of Hematology, Dongguan People's Hospital Affiliated to Southern Medical University;
  • 关键词:纳米场效应晶体管 ; 生物传感器 ; 肿瘤 ; 早期检测
  • 英文关键词:Nanomaterial-Based Field Effect Transistor;;Biosensor;;Tumor;;Early Detection
  • 中文刊名:HBYK
  • 英文刊名:Medical Journal of Wuhan University
  • 机构:华中科技大学同济医学院附属武汉市中心医院检验科;南方医科大学附属东莞人民医院血液内科;
  • 出版日期:2019-06-13
  • 出版单位:武汉大学学报(医学版)
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金青年项目(编号:31500729)
  • 语种:中文;
  • 页:HBYK201904013
  • 页数:6
  • CN:04
  • ISSN:42-1677/R
  • 分类号:75-80
摘要
肿瘤的早期检测对于肿瘤的早期发现、诊断及治疗具有重要意义。基于硅纳米线、石墨烯、二硫化钼的纳米场效应晶体管生物传感器,由于灵敏度高和特异性好、分析速度快、免标记、廉价、能够微型化和一体化等优点,能够检测肿瘤相关标志物微RNA和蛋白质等,在肿瘤的早期检测中可以发挥重要作用。
        The timely detection of tumors is of great significance for the early detection, diagnosis and treatment for cancer. Nano-field effect transistor biosensors, based on silicon nanowires, graphene and molybdenum disulfide, can detect tumor derived miRNA and protein markers due to the several critical advantages including high sensitivity and selectivity, rapid analysis, label-free detection, easy operation and so on, which can play an important role in the early detection of tumor.
引文
[1] Zheng R, Zeng H, Zhang S, et al. National estimates of cancer prevalence in China, 2011[J]. Cancer Lett,2016,370(1):33-38.
    [2] Bastarrika G, Garcíavelloso MJ, Lozano MD, et al.Early lung cancer detection using spiral computed tomography and positron emission tomography[J]. Am J Respir Crit Care Med, 2005,171(12):1 378-1 383.
    [3] Saisho H, Yamaguchi T. Diagnostic imaging for pancreatic cancer:computed tomography, magnetic resonance imaging, and positron emission tomography[J].Pancreas, 2004,28(3):273-278.
    [4] Liu C, Yan X, Zhang X, et al. Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer[J]. Phys Med Biol, 2007,52(2):419-427.
    [5] Kong RM, Ding L, Wang Z, et al. A novel aptamerfunctionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen[J].Anal Bioanal Chem, 2015,407(2):369-377.
    [6] Wang H, Wang X, Wang J, et al. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers[J]. Sci Rep, 2016,6:33 140.
    [7] Jang HS, Park KN, Chang DK, et al. Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen[J]. Opt Commun, 2009, 282(14):2 827-2 830.
    [8] Zheng C, Huang L, Zhang H, et al. Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown Graphene[J]. Acs Appl Mater Interfaces, 2015, 7(31):16 953-16 959.
    [9] Zhang AQ, Lieber CM. Nano-bioelectronics[J]. Chem Rev, 2016,116(1):215-257.
    [10] Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing[J]. Adv Mater, 2012, 24(1):34-51.
    [11] Huang Y, Dong X, Liu Y, et al. Graphene-based biosensors for detection of bacteria and their metabolic activities[J]. J Mater Chem, 2011,21(33):12 358-12 362.
    [12] Lin CT, Loan PTK, Chen TY, et al. Label-free electrical detection of DNA hybridization on graphene using hall effect measurements:Revisiting the sensing mechanism[J]. Adv Funct Mater, 2013,23(18):2 301-2 307.
    [13] Wang L, Wang Y, Wong JI, et al. Functionalized MoS2nanosheet-based field-effect biosensor for labelfree sensitive detection of cancer marker proteins in solution[J]. Small, 2014,10(6):1 101-1 105.
    [14] Zhang GJ, Chua JH, Chee RE, et al. Label-free direct detection of miRNA with silicon nanowire biosensors[J]. Biosens Bioelectron, 2009,24(8):2 504-2 508.
    [15] Stine R, Mulvaney SP, Robinson JT, et al. Fabrication, optimization, and use of graphene field effect sensors[J]. Anal Chem, 2013,85(2):509-521.
    [16] Gao A, Lu N, Dai P, et al. Label-free and ultrasensitive detection of microRNA biomarkers in lung cancer cells based on silicon nanowire FET biosensors:Proceedings of the 17th International Conference on SolidState Sensors, Actuators and Microsystems(Transducers&Eurosensors XXVII)[C]. Barcelona, Spain:IEEE, 2013:2 439-2 442.
    [17] Lu N, Gao A, Dai P, et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free micoRNAs sensing[J]. Small, 2014, 10(10):2 022-2 028.
    [18] Gao A, Yang X, Tong J, et al. Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays[J]. Biosens Bioelectron, 2017,91:482-488.
    [19] Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nat Biotechnol, 2005,23(10):1 294-1 301.
    [20] Huang YW, Wu CS, Chuang CK, et al. Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor[J]. Anal Chem, 2013,85(16):7 912-7 918.
    [21] Kim A, Ah CS, Yu HY, et al. Ultrasensitive, labelfree, and real-time immunodetection using silicon fieldeffect transistors[J]. Appl Phys Lett, 2007, 91(10):1 294.
    [22] Lu N, Gao A, Dai P, et al. Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays[J]. Anal Chem, 2015, 87(22):11 203-11 208.
    [23] Stern E, Vacic A, Rajan NK, et al. Label-free biomarker detection from whole blood[J]. Nat Nanotechnol, 2010,5(2):138-142.
    [24] Chen HC, Chen YT, Tsai RY, et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis[J]. Biosens Bioelectron, 2015,66:198-207.
    [25] Spanjaard RA, Whren KM, Graves C, et al. Tumor necrosis factor receptor superfamily member troy is a novel melanoma biomarker and potential therapeutic target[J]. Int J Cancer, 2007,120(6):1 304-1 310.
    [26] Maedler C, Kim D, Spanjaard RA, et al. Sensing of the melanoma biomarker troy using silicon nanowire field-effect transistors[J]. ACS Sensors, 2016,1(6):696-701.
    [27] Tran DP, Wolfrum B, Stockmann R, et al. CMOScompatible silicon nanowires on-a-Chip:Fabrication and Pre-clinical validation for the detection of a cancer prognostic protein marker in serum[J]. Anal Chem, 2014,87(3):1 662-1 668.
    [28] Xu G, Abbott J, Qin L, et al. Electrophoretic and field-effect graphene for all-electrical DNA array technology[J]. Nature Commun, 2014,5:4 866.
    [29] Cai B, Huang L, Zhang H, et al. Gold nanoparticlesdecorated graphene field-effect transistor biosensor for femtomolar microRNA detection[J]. Biosens Bioelectron, 2015,74:329-334.
    [30] Kim DJ, Sohn IY, Jung JH, et al. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection[J]. Biosens Bioelectron, 2013,41:621-626.
    [31] Myung S, Solanki A, Kim C, et al. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers[J]. Adv Mater, 2011, 23(19):2 221-2 225.
    [32] Rajesh D, Gao Z, Vishnubhotla R, et al. Genetically engineered antibody functionalized platinum nanoparticles modified CVD-graphene nanohybrid transistor for the detection of breast cancer biomarker, her3[J]. Adv Mater Interfaces, 2016,3(17):1600124.
    [33] Zhou L, Mao H, Wu C, et al. Label-free graphene biosensor targeting cancer molecules based on non-covalent modification[J]. Biosens Bioelectron, 2017,87:701-707.
    [34] Mansouri SM, Salimi A. Ultrasensitive flexible FETtype aptasensor for CA125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film[J]. Anal Chim Acta, 2018,1 000:273-282.
    [35] Kwon OS, Park SJ, Hong JY, et al. Flexible FETtype VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer[J]. ACS Nano, 2012,6(2):1 486-1 493.
    [36] Majd SM, Salimi A, Ghasemi F. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor[J]. Biosens Bioelectron, 2018,105:6-13.
    [37] Lee J, Dak P, Lee Y, et al. Two-dimensional layered MoS2biosensors enable highly sensitive detection of biomolecules[J]. Sci Rep, 2014,4(3):7 352.
    [38] Park H, Han GC, Lee SW, et al. Label-free and recalibrated multilayer MoS2biosensor for point-of-care diagnostics[J]. ACS Appl Mat Interfaces, 2017, 9(50):43 490-43 497.
    [39] Fujiki H, Suganuma M. Tumor promoters-microcystin-LR, nodularin and TNF-αand human cancer development[J]. Anticancer Agents Med Chem, 2011,11(1):4-18.
    [40] Zidi I, Mestiri S, Bartegi A, et al. TNF-αand its inhibitors in cancer[J]. Med Oncol, 2010,27(2):185-198.
    [41] Nam H, Oh BR, Chen P, et al. Multiple MoS2transistors for sensing molecule interaction kinetics[J]. Sci Rep, 2015,5:10 546.
    [42] Chen M, Nam H, Rokni H, et al. Nanoimprint-assisted shear exfoliation(NASE)for producing multilayer MoS2structures as field-effect transistor channel arrays[J]. ACS Nano, 2015,9(9):8 773-8 785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700